helicalDosecalcSetup5.m 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. %%
  2. % This file has been modified by Surendra Prajapati especially to run
  3. % WiscPlan for KV beams. Works for running locally as well as in Server.
  4. %
  5. % RTF 11/4/05
  6. % Sets up the run files needed for running a Condor convolution
  7. % superposition dose calculation with photon beams.
  8. % Versions of the convolution code that run in both Windows XP, Condor, and
  9. % directly through Matlab can all be created here. The only real
  10. % differences between the files are in the access conventions, which just%
  11. % This has to do with switching forward slashes with backslashes.
  12. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  13. % Also edit:
  14. % Kernel should always be named Kernels.mat
  15. % SAD < 20 was edited from SAD < 50 for clinical system (error message)
  16. %
  17. % specify where kernel and geometry files are located
  18. patient_dir = 'C:\010-work\003-localGit\WiscPlan\WiscPlanPhotonkV125\PatientData';
  19. num_batches = 2; % number of cores you want to run the beam calculation
  20. iso = [0 0 0]; % Point about which gantry rotations begin
  21. SAD = 35; % source-axis distance for the x-ray source
  22. pitch = 0.86; % fraction of beam with couch translates per rotation
  23. % define the overall beam field size for each beam angle
  24. xpmin = -0.5; % -field width / 2
  25. xpmax = 0.5; % +field width / 2
  26. ypmin = -0.5; % -jaw width / 2
  27. ypmax = 0.5; % +jaw width / 2
  28. % y-prime points in the z-direction in the CT coordinate system
  29. % Number of beamlets in the BEV for each direction
  30. Mxp = 20; % number of leaves; leaf size is 1/20cm= 0.5mm
  31. Nyp = 1; % always 1 for Tomo due to binary mlc
  32. % ============================================= End of user-supplied inputs
  33. executable_path = 'C:\010-work\003-localGit\WiscPlan\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  34. kernel_file = 'Kernels.mat';
  35. geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  36. % tumor bow and stern locations
  37. load(geometry_file);
  38. ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  39. [target_idx okay] = listdlg('ListString', ROI_names, ...
  40. 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  41. 'PromptString', 'Please select the target ROI. ');
  42. if okay ~= 1
  43. msgbox('Plan creation aborted');
  44. return;
  45. end
  46. targetMask = zeros(size(Geometry.data));
  47. targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  48. targetMaskZ = sum(sum(targetMask,1),2);
  49. zBow = find(targetMaskZ>0, 1, 'first')*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  50. zStern = find(targetMaskZ>0, 1, 'last')*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  51. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  52. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  53. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  54. % flags used to select which calculations will be set up
  55. Condor_flag = 1;
  56. ptvInd = target_idx; % PTV index in Geometry.ROIS
  57. fieldWidth = ypmax - ypmin;
  58. % total number of rotations required for treatment
  59. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  60. Nphi = Nrot*51; % number of angles used in the calculation
  61. load(geometry_file);
  62. % define the limits of the angles that will be used for the calculation
  63. phimin = 0; % starting angle in radians
  64. phimax = 2*pi*Nphi;
  65. phi = [0:Nphi-1]/Nphi*2*pi*Nrot;
  66. condor_folder = patient_dir;
  67. winxp_folder = 'winxp';
  68. % create names for condor input and output folders
  69. input_folder = '.';
  70. output_folder = '.';
  71. % name of the convolution/superposition executable, which will be in the
  72. % 'code' folder of each respective run type folder
  73. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  74. winxp_executable_name = 'convolution.exe';
  75. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  76. % set the beam parameters, assuming a helical beam trajectory
  77. % folders that will be inside the 'input' folder
  78. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  79. beamspec_batches_folder = 'beamspecbatches';
  80. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  81. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  82. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  83. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  84. % output folders
  85. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  86. geometry_header_filename = 'geometryHeader.txt';
  87. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  88. % end of user-defined parameters
  89. % check the validity of the user-defined variables
  90. if xpmin >= xpmax
  91. error('xpmin must be less than xpmax.');
  92. end
  93. if ypmin >= ypmax
  94. error('ypmin must be less than ypmax.');b
  95. end
  96. if phimin > phimax
  97. error('phimin must be less than or equal to phimax.');
  98. end
  99. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  100. error('Mxp, Nyp, and Nphi must be greater than zero.');
  101. end
  102. if SAD < 20
  103. error('It is recommended that the SAD be greater than 20 cm.');
  104. end
  105. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  106. % size of each beam aperture, making them vectors so extension to
  107. % non-uniform aperture sizes becomes obvious
  108. del_xp = (xpmax - xpmin)/Mxp;
  109. del_yp = (ypmax - ypmin)/Nyp;
  110. % Calculate the xp and yp offsets, which lie at the centers of the
  111. % apertures.
  112. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  113. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  114. [M,N,Q] = size(Geometry.rhomw);
  115. START = single(Geometry.start - iso);
  116. INC = single(Geometry.voxel_size);
  117. % define the tumor mask
  118. tumorMask = zeros(size(Geometry.rhomw),'single');
  119. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  120. BW = bwdist(tumorMask);
  121. tumorMaskExp = tumorMask;
  122. tumorMaskExp(BW <= 4) = 1;
  123. P = zeros(Mxp,Nphi);
  124. fprintf('Checking beam''s eye view ...\n');
  125. for p=1:Nphi
  126. % ir and jr form the beam's eye view (BEV)
  127. ir = [-sin(phi(p)); cos(phi(p)); 0];
  128. jr = [0 0 1]';
  129. % kr denotes the beam direction
  130. kr = [cos(phi(p)); sin(phi(p)); 0];
  131. for m=1:Mxp
  132. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  133. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  134. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  135. if ~isempty(indVisited)
  136. P(m,p) = max(deffVisited);
  137. end
  138. end
  139. end
  140. fprintf('Finished checking BEV\n');
  141. % load data required for the dose calculator
  142. load(kernel_file);
  143. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  144. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  145. % convert Geometry and kernels to single
  146. f = fieldnames(Kernels);
  147. for k=1:length(f)
  148. if isnumeric(getfield(Kernels,f{k}))
  149. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  150. end
  151. end
  152. f = fieldnames(Geometry);
  153. for k=1:length(f)
  154. if isnumeric(getfield(Geometry,f{k}))
  155. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  156. end
  157. end
  158. % account for isocenter
  159. Geometry.start = single(Geometry.start - iso);
  160. % find the total number of beams
  161. Nbeam = Nphi*Mxp*Nyp;
  162. batch_num = 0; % start the count for the number of total batches
  163. % fill up a cell array of beam structures, grouped by batch
  164. clear batches;
  165. batch_num = 0;
  166. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  167. rotNum = 0;
  168. % calculate beams for all source directions and apertures
  169. for k=1:Nphi % loop through all gantry angles
  170. % calculate the source location for a helical trajectory
  171. beam.SAD = single(SAD);
  172. % the kp vector is the beam direction, ip and jp span the beam's eye view
  173. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  174. beam.jp = single([0 0 1]);
  175. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  176. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  177. rotNumOld = rotNum;
  178. rotNum = floor(k/51) + 1; % current rotation number
  179. if rotNum - rotNumOld > 0
  180. beam_num = 0; % if the rotation number has changed, start the beam count over
  181. end
  182. for m=1:Mxp % loop through all apertures in the xp-direction
  183. % calculate the beam if the tomotherapy fluence value is non-zero
  184. if P(m,k) > 0
  185. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  186. beam_num = beam_num + 1;
  187. % set the beam aperture parameters
  188. beam.del_xp = single(del_xp);
  189. beam.del_yp = single(del_yp);
  190. beam.xp = single(xp(m));
  191. beam.yp = single(0);
  192. beam.num = single(num); % record the beam number to avoid any later ambiguity
  193. batches{rotNum}{beam_num} = beam;
  194. end
  195. end
  196. end
  197. % merge/split batches
  198. all_beams = horzcat(batches{:});
  199. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  200. batches = cell(num_batches,1);
  201. for k = 1:(num_batches-1)
  202. batches{k} = all_beams(1+num_beams_per_batch*(k-1):num_beams_per_batch*k);
  203. end
  204. batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  205. % Everything else in this file is related to saving the batches in a
  206. % useable form.
  207. if Condor_flag == 1
  208. % delete the old submission file
  209. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  210. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  211. % create folders where batch information will be sent
  212. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  213. % save the kernels
  214. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  215. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  216. % create kernel filenames files
  217. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  218. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  219. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  220. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  221. fprintf(fid,'kernel_header\n');
  222. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  223. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  224. fprintf(fid2,'kernel_header\n');
  225. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  226. fprintf(fid,'kernel_radii\n');
  227. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  228. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  229. fprintf(fid2,'kernel_radii\n');
  230. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  231. fprintf(fid,'kernel_angles\n');
  232. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  233. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  234. fprintf(fid2,'kernel_angles\n');
  235. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  236. fprintf(fid,'kernel_energies\n');
  237. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  238. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  239. fprintf(fid2,'kernel_energies\n');
  240. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  241. fprintf(fid,'kernel_primary\n');
  242. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  243. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  244. fprintf(fid2,'kernel_primary\n');
  245. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  246. fprintf(fid,'kernel_first_scatter\n');
  247. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  248. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  249. fprintf(fid2,'kernel_first_scatter\n');
  250. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  251. fprintf(fid,'kernel_second_scatter\n');
  252. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  253. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  254. fprintf(fid2,'kernel_second_scatter\n');
  255. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  256. fprintf(fid,'kernel_multiple_scatter\n');
  257. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  258. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  259. fprintf(fid2,'kernel_multiple_scatter\n');
  260. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  261. fprintf(fid,'kernel_brem_annih\n');
  262. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  263. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  264. fprintf(fid2,'kernel_brem_annih\n');
  265. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  266. fprintf(fid,'kernel_total\n');
  267. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  268. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  269. fprintf(fid2,'kernel_total\n');
  270. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  271. fprintf(fid,'kernel_fluence\n');
  272. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  273. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  274. fprintf(fid2,'kernel_fluence\n');
  275. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  276. fprintf(fid,'kernel_mu\n');
  277. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  278. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  279. fprintf(fid2,'kernel_mu\n');
  280. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  281. fprintf(fid,'kernel_mu_en\n');
  282. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  283. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  284. fprintf(fid2,'kernel_mu_en\n');
  285. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  286. fclose(fid);
  287. end
  288. % name for the condor submit file that will be used
  289. condor_submit_file = 'convolutionSubmit.txt';
  290. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  291. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  292. % check the geometry file to ensure that it's not in Hounsfield units
  293. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  294. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  295. end
  296. geometry_folder = 'geometryfiles';
  297. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  298. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  299. if Condor_flag == 1
  300. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  301. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  302. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  303. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  304. % create geometry filenames files
  305. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  306. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  307. fprintf(fid,'geometry_header\n');
  308. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  309. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  310. fprintf(fid2,'geometry_header\n');
  311. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  312. fprintf(fid,'geometry_density\n');
  313. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  314. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  315. fprintf(fid2,'geometry_density\n');
  316. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  317. fclose(fid);
  318. % write command file
  319. % TODO consistent naming throughout script
  320. for k = 1:numel(batches)
  321. fid = fopen(fullfile(patient_dir,sprintf('run%d.cmd',k-1)), 'w');
  322. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  323. fullfile(patient_dir, kernel_filenames_condor),...
  324. fullfile(patient_dir, geometry_filenames_condor),...
  325. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  326. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  327. fclose(fid);
  328. end
  329. % write the condor submit file
  330. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  331. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  332. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  333. % fprintf(fid,'###############################################################\n');
  334. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  335. % fprintf(fid,'###############################################################\n\n');
  336. % fprintf(fid,'copy_to_spool = false\n');
  337. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  338. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  339. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  340. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  341. % fprintf(fid,['Queue ' num2str(Nrot)]);
  342. % fclose(fid);
  343. % % write the condor submit file
  344. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  345. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  346. fid = fopen([condor_folder '/' condor_submit_file],'w');
  347. fprintf(fid,'###############################################################\n');
  348. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  349. fprintf(fid,'###############################################################\n\n');
  350. fprintf(fid,'copy_to_spool = false\n');
  351. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  352. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  353. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  354. fprintf(fid,['Request_memory = 1000' '\n']);
  355. fprintf(fid,['Request_disk = 500000' '\n']);
  356. fprintf(fid,['Output = $(Cluster).out' '\n']);
  357. fprintf(fid,['Log = $(Cluster).log' '\n']);
  358. fprintf(fid,['Error = $(Cluster).err' '\n']);
  359. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  360. % fclose(fid);
  361. end
  362. % write the batches to files
  363. for n=1:numel(batches)
  364. batch = batches{n}; % current batch
  365. if Condor_flag == 1
  366. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  367. end
  368. end
  369. % for k = 1:numel(batches)
  370. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  371. % end
  372. % Ask for User option to run the dose calculation locally on the computer
  373. % or just to get necessary files for CHTC server
  374. % 'y' means run locally, 'n' means not to run locally on the computer
  375. strBeamlet = '';
  376. while(1)
  377. if strcmpi('y',strBeamlet)
  378. break;
  379. elseif strcmpi('n',strBeamlet)
  380. break;
  381. end
  382. strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  383. end
  384. if(strcmpi('y',strBeamlet))
  385. for k = 1:numel(batches)
  386. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  387. end
  388. end