% paths.patient_dir % paths.Goal_dir (previously called DP_dir) % paths.patient % paths.goalsName % colorwash(Geometry.data, D_full, [500, 1500], [0,70]) % orthoslice(D_full, [0,70]) function [D_full, w_fin, Geometry, optGoal] = NLP_optimizer_v2(varargin) % This function performs the beamlet optimization % [D_full, w_fin, Geometry, optGoal] = NLP_beamlet_optimizer; % % Inputs: % () OR % (Pat_path, path2goal) OR % (Pat_path, path2goal, beamlet_weights) % Pat_path, path2goal = strings to patient folder and optimal goals % beamlet_weights = initial beamlet weights % % Outputs: % full dose image dose: [D_full, w_fin, Geometry, optGoal] % % Made by Peter Ferjancic 1. May 2018 % Last updated: 1. April 2019 if nargin<2 load('WiscPlan_preferences.mat') [Pat_path] = uigetdir([WiscPlan_preferences.patientDataPath ], 'Select Patient folder'); [Goal_file,Goal_path,indx] = uigetfile([Pat_path '\matlab_files\*.mat'], 'Select OptGoal file'); path2geometry = [Pat_path, '\matlab_files\Geometry.mat']; path2goal = [Goal_path, Goal_file]; else Pat_path = varargin{1}; path2geometry = [Pat_path, '\matlab_files\Geometry.mat']; path2goal = varargin{2}; end str = inputdlg({'N of iterations for initial calc', 'N of iterations for full calc', ... 'Use pre-existing NLP_result to initiate? (y/n)'}, 'input', [1,35], {'10000', '500000', 'n'}); N_fcallback1 = str2double(str{1}); % 10000 is a good guesstimate N_fcallback2 = str2double(str{2}); % 500000 is a good guesstimate pre_beamWeights = str{3}; switch pre_beamWeights case 'y' [NLP_file,NLP_path,indx] = uigetfile([Pat_path '\matlab_files\*.mat'], 'Select NLP_result file'); load([NLP_path, NLP_file]) w_beamlets = NLP_result.weights; load([Pat_path, '\all_beams.mat']) if numel(all_beams) ~= numel(w_beamlets) error('Provided weight number does not match beamlet number!') end case 'n' disp('Initial beam weights will be calculated.') end %% PROGRAM STARTS HERE % - no tocar lo que hay debajo - fprintf('starting NLP optimization process... \n') % % -- LOAD GEOMETRY, GOALS, BEAMLETS -- load(path2geometry) load(path2goal) [beamlets, beamlets_joined, numBeamlet, numBeam, beam_i_list] = get_beam_lets(Geometry, Pat_path); %% -- OPTIMIZATION TARGETS -- % -- make the optimization optGoal structure -- for i_goal = 1:size(OptGoals.goals,1) answer = inputdlg(['# of supervoxels for "' OptGoals.data{i_goal}.name '" with ' num2str(numel(OptGoals.data{i_goal}.ROI_idx)) ' vox: ("0" to skip)']) switch answer{1} case '0' % if not supervoxel, just select provided ROI_idx optGoal{i_goal} = OptGoals.data{i_goal}; optGoal{i_goal}.beamlets_pruned = sparse(beamlets(optGoal{i_goal}.ROI_idx, :)); optGoal_beam{i_goal} = OptGoals.data{i_goal}; optGoal_beam{i_goal}.beamlets_pruned = sparse(beamlets_joined(optGoal{i_goal}.ROI_idx, :)); otherwise % -- if supervoxel, merge given columns % - make supervoxel map mask = zeros(OptGoals.data{i_goal}.imgDim); mask(OptGoals.data{i_goal}.ROI_idx) = 1; superMask = superpix_group(mask, str2double(answer{1})); superVoxList = unique(superMask); superVoxList = superVoxList(superVoxList>0); optGoal{i_goal} = OptGoals.data{i_goal}; optGoal{i_goal}.ROI_idx_old = optGoal{i_goal}.ROI_idx; % copy old index data optGoal{i_goal}.ROI_idx = zeros(numel(superVoxList), 1); optGoal{i_goal}.opt_weight = optGoal{i_goal}.opt_weight * numel(optGoal{i_goal}.ROI_idx_old)/numel(optGoal{i_goal}.ROI_idx); optGoal_beam{i_goal} = OptGoals.data{i_goal}; optGoal_beam{i_goal}.ROI_idx_old = optGoal_beam{i_goal}.ROI_idx; optGoal_beam{i_goal}.ROI_idx = zeros(numel(superVoxList), 1); optGoal_beam{i_goal}.opt_weight = optGoal_beam{i_goal}.opt_weight * numel(optGoal_beam{i_goal}.ROI_idx_old)/numel(optGoal_beam{i_goal}.ROI_idx); h_w1 = waitbar(0, 'merging superboxels'); for i_supVox = 1:numel(superVoxList) supVox_idx = superVoxList(i_supVox); waitbar(i_supVox/numel(superVoxList), h_w1) idxList = find(superMask == supVox_idx); optGoal{i_goal}.beamlets_pruned(i_supVox,:) = sparse(mean(beamlets(idxList, :),1)); optGoal_beam{i_goal}.beamlets_pruned(i_supVox,:) = sparse(mean(beamlets_joined(idxList, :),1)); % -- make new indeces optGoal{i_goal}.ROI_idx(i_supVox) = idxList(1); optGoal_beam{i_goal}.ROI_idx(i_supVox) = idxList(1); end close(h_w1) end end % -- make them robust -- RO_params=0; optGoal_beam = make_robust_optGoal(optGoal_beam, RO_params, beamlets_joined); optGoal = make_robust_optGoal(optGoal, RO_params, beamlets); % -- CALLBACK OPTIMIZATION FUNCTION -- fun1 = @(x) get_penalty(x, optGoal_beam); fun2 = @(x) get_penalty(x, optGoal); % -- OPTIMIZATION PARAMETERS -- % define optimization parameters A = []; b = []; Aeq = []; beq = []; lb = zeros(1, numBeamlet); lb_beam = zeros(1, numBeam); ub = []; nonlcon = []; % define opt limits, and make it fmincon progress options = optimoptions('fmincon'); options.MaxFunctionEvaluations = N_fcallback1; options.Display = 'iter'; options.PlotFcn = 'optimplotfval'; % options.UseParallel = true; options.UseParallel = false; % options.OptimalityTolerance = 1e-9; %% -- INITIALIZE BEAMLET WEIGHTS -- switch pre_beamWeights case 'y' % should have been assigned previously. disp('Provided beamlet weights used for initial comparison') case 'n' % if initial beamlet weights are not provided, get quick estimate fprintf('\n running initial optimizer:') % initialize beamlet weights, OR w0_beams = ones(numBeam,1); w0_beams = mean(optGoal_beam{1}.D_final(optGoal{1}.ROI_idx) ./ (optGoal_beam{1}.beamlets_pruned*w0_beams+0.1)) * w0_beams; w0_beams = double(w0_beams); % -- GET BEAM WEIGHTS -- tic w_beam = fmincon(fun1,w0_beams,A,b,Aeq,beq,lb_beam,ub,nonlcon,options); fprintf(' done!:') t=toc; disp(['Optimization time for beams = ',num2str(t)]); w_beamlets = ones(numBeamlet,1); numBeam=numel(unique(beam_i_list)); for beam_i = 1:numBeam % assign weights to beamlets % beamlets from same beam get same initial weights w_beamlets(beam_i_list == beam_i) = w_beam(beam_i); end end %% FULL OPTIMIZATION % -- GET FULL BEAMLET WEIGHTS -- options.MaxFunctionEvaluations = N_fcallback2; tic fprintf('\n running full optimizer:') w_fin = fmincon(fun2,w_beamlets,A,b,Aeq,beq,lb,ub,nonlcon,options); fprintf(' done!:') t=toc; disp(['Optimization time for beamlets = ',num2str(t)]); %% evaluate the results D_full = reshape(beamlets * w_fin, size(Geometry.data)); %% save outputs NLP_result.dose = D_full; NLP_result.weights = w_fin; save([Pat_path, '\matlab_files\NLP_result.mat'], 'NLP_result'); plot_DVH(Geometry, D_full) colorwash(Geometry.data, D_full, [-500, 500], [0, 35]); end %% support functions % ---- PENALTY FUNCTION ---- function penalty = get_penalty(x, optGoal) % this function gets called by the optimizer. It checks the penalty for % all the robust implementation and returns the worst result. NumScenarios = optGoal{1}.NbrRandScenarios * optGoal{1}.NbrSystSetUpScenarios * optGoal{1}.NbrRangeScenarios; fobj = zeros(NumScenarios,1); sc_i = 1; for nrs_i = 1:optGoal{1}.NbrRandScenarios for sss_i = 1 :optGoal{1}.NbrSystSetUpScenarios % syst. setup scenarios = sss for rgs_i = 1:optGoal{1}.NbrRangeScenarios % range scenario = rs fobj(sc_i)=eval_f(x, optGoal, nrs_i, sss_i, rgs_i); sc_i = sc_i + 1; end end end % take the worst case penalty of evaluated scenarios penalty=max(fobj); end % ------ supp: penalty for single scenario ------ function penalty = eval_f(x, optGoal, nrs_i, sss_i, rgs_i) penalty = 0; % for each condition for goal_i = 1:numel(optGoal) switch optGoal{goal_i}.function % min, max, min_sq, max_sq, LeastSquare, min_perc_Volume, max_perc_Volume case 'min' % penalize if achieved dose is lower than target dose d_penalty = 1.0e0 * sum(max(0, ... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target) -... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x))); case 'max' % penalize if achieved dose is higher than target dose d_penalty = 1.0e0 * sum(max(0, ... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target))); case 'min_sq' % penalize if achieved dose is lower than target dose temp1=min(0, (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target)); d_penalty = 1.0e0 * sum(temp1.*temp1); case 'max_sq' % penalize if achieved dose is higher than target dose temp1=max(0, (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target)); d_penalty = 1.0e0 * sum(temp1.*temp1); case 'LeastSquare' % penalize with sum of squares any deviation from target % dose temp1 = (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) - ... optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target; d_penalty = 1.0e0* sum(temp1.^2); case 'min_perc_Volume' % penalize by amount of volume under threshold perc_vox = numel(find((optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target) -... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) > 0)) ... / numel(optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target); d_penalty = 3.0e4 * min(perc_vox-0.05, 0) case 'max_perc_Volume' % penalize by amount of volume under threshold perc_vox = numel(find((optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target) -... (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) < 0)) ... / numel(optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target); d_penalty = 3.0e4 * min(perc_vox-0.05, 0) end penalty = penalty + d_penalty * optGoal{goal_i}.opt_weight; end end % ---- MAKE ROI ROBUST ---- function optGoal = make_robust_optGoal(optGoal, RO_params, beamlets); % take regular optimal goal and translate it into several robust cases % RO_params - should have the information below % nrs - random scenarios % sss - system setup scenarios % rgs - random range scenarios % X - X>0 moves image right % Y - Y>0 moves image down % Z - in/out. shift_mag = 1; % vox of shift nrs_scene_list={[0,0,0]}; % ----====#### CHANGE ROBUSTNESS HERE ####====---- sss_scene_list={[0,0,0]}; % sss_scene_list={[0,0,0], [-shift_mag,0,0], [shift_mag,0,0], [0,-shift_mag,0], [0,shift_mag,0], [0,0,-1], [0,0,1]}; % sss_scene_list={[0,0,0], [-shift_mag,0,0], [shift_mag,0,0], [0,-shift_mag,0], [0,shift_mag,0],... % [-shift_mag*2,0,0], [shift_mag*2,0,0], [0,-shift_mag*2,0], [0,shift_mag*2,0]}; % ----====#### CHANGE ROBUSTNESS HERE ####====---- rgs_scene_list={[0,0,0]}; % [targetIn, meta] = nrrdread('C:\010-work\003_localGit\WiscPlan_v2\data\archive\CDP_data\CDP5_DP_target.nrrd'); % [targetIn, meta] = nrrdread('C:\010-work\003_localGit\WiscPlan_v2\data\PD_HD_dicomPhantom\Tomo_DP_target.nrrd'); % [targetIn, meta] = nrrdread('C:\010-work\003_localGit\WiscPlan_v2\data\archive\CDP_data\CDP5_DP_target.nrrd'); for i = 1:numel(optGoal) optGoal{i}.NbrRandScenarios =numel(nrs_scene_list); optGoal{i}.NbrSystSetUpScenarios=numel(sss_scene_list); optGoal{i}.NbrRangeScenarios =numel(rgs_scene_list); end for goal_i = 1:numel(optGoal) % get target idx=optGoal{goal_i}.ROI_idx; targetImg1=zeros(optGoal{goal_i}.imgDim); targetImg1(idx)=1; % get beamlets for nrs_i = 1:optGoal{goal_i}.NbrRandScenarios % num. of random scenarios % modify target and beamlets targetImg2=targetImg1; % beamlets stay the same for sss_i = 1 :optGoal{goal_i}.NbrSystSetUpScenarios % syst. setup scenarios = sss % modify target and beamlets [targetImg3 idxValid]=get_RO_sss(targetImg2, sss_scene_list{sss_i}); % beamlets stay the same for rgs_i = 1:optGoal{goal_i}.NbrRangeScenarios % range scenario = rgs % modify target and beamlets targetImg4=targetImg3; % beamlets stay the same %% make new target and beamlets ROI_idx=[]; ROI_idx=find(targetImg4>0); target = optGoal{goal_i}.D_final(idxValid); beamlets_pruned = beamlets(ROI_idx, :); % save to optGoal output optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.ROI_idx = ROI_idx; optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned = beamlets_pruned; optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target = target; end end end end end % ------ supp: RO case SSS ------ function [targetImg3 ia]=get_RO_sss(targetImg2, sss_scene_shift); % translate the target image targetImg3 = imtranslate(targetImg2,sss_scene_shift); % now we need to figure out if any target voxels fell out during the % shift imgValid = imtranslate(targetImg3,-sss_scene_shift); imgInvalid = (targetImg2-imgValid); idx_1 = find(targetImg2); idx_2 = find(imgInvalid); [idxValid,ia] = setdiff(idx_1,idx_2); [C,ia, ib] = intersect(idx_1,idxValid); end