helicalDosecalcSetup6.m 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. %%
  2. % This version was modified by Peter Ferjancic to accept .nrrd file format
  3. % for target.
  4. % This file has been modified by Surendra Prajapati especially to run
  5. % WiscPlan for KV beams. Works for running locally as well as in Server.
  6. %
  7. % RTF 11/4/05
  8. % Sets up the run files needed for running a Condor convolution
  9. % superposition dose calculation with photon beams.
  10. % Versions of the convolution code that run in both Windows XP, Condor, and
  11. % directly through Matlab can all be created here. The only real
  12. % differences between the files are in the access conventions, which just%
  13. % This has to do with switching forward slashes with backslashes.
  14. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  15. % Also edit:
  16. % Kernel should always be named Kernels.mat
  17. % SAD < 20 was edited from SAD < 50 for clinical system (error message)
  18. %
  19. % specify where kernel and [geometry] files are located
  20. patient_dir = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\PatientData';
  21. num_batches = 2; % number of cores you want to run the beam calculation
  22. iso = [0 0 0]; % Point about which gantry rotations begin
  23. SAD = 35; % source-axis distance for the x-ray source
  24. pitch = 0.86; % fraction of beam with couch translates per rotation
  25. % define the overall beam field size for each beam angle
  26. xpmin = -0.5; % -field width / 2
  27. xpmax = 0.5; % +field width / 2
  28. ypmin = -0.5; % -jaw width / 2
  29. ypmax = 0.5; % +jaw width / 2
  30. % y-prime points in the z-direction in the CT coordinate system
  31. % Number of beamlets in the BEV for each direction
  32. Mxp = 20; % number of leaves; leaf size is 1/20cm= 0.5mm
  33. Nyp = 1; % always 1 for Tomo due to binary mlc
  34. % ============================================= End of user-supplied inputs
  35. executable_path = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  36. kernel_file = 'Kernels.mat';
  37. geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  38. ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  39. [target_idx okay] = listdlg('ListString', ROI_names, ...
  40. 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  41. 'PromptString', 'Please select the target ROI. ');
  42. if okay ~= 1
  43. msgbox('Plan creation aborted');
  44. return;
  45. end
  46. targetMask = zeros(size(Geometry.data));
  47. targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  48. % Grozomah - targetMask needs to get a 'double' matrix with the location of
  49. % the target
  50. targetMaskZ = sum(sum(targetMask,1),2);
  51. zBow = find(targetMaskZ>0, 1, 'first')*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  52. zStern = find(targetMaskZ>0, 1, 'last')*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  53. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  54. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  55. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  56. % flags used to select which calculations will be set up
  57. Condor_flag = 1;
  58. ptvInd = target_idx; % PTV index in Geometry.ROIS
  59. fieldWidth = ypmax - ypmin;
  60. % total number of rotations required for treatment
  61. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  62. Nphi = Nrot*51; % number of angles used in the calculation
  63. % load(geometry_file);
  64. % define the limits of the angles that will be used for the calculation
  65. phimin = 0; % starting angle in radians
  66. phimax = 2*pi*Nphi;
  67. phi = [0:Nphi-1]/Nphi*2*pi*Nrot;
  68. condor_folder = patient_dir;
  69. winxp_folder = 'winxp';
  70. % create names for condor input and output folders
  71. input_folder = '.';
  72. output_folder = '.';
  73. % name of the convolution/superposition executable, which will be in the
  74. % 'code' folder of each respective run type folder
  75. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  76. winxp_executable_name = 'convolution.exe';
  77. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  78. % set the beam parameters, assuming a helical beam trajectory
  79. % folders that will be inside the 'input' folder
  80. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  81. beamspec_batches_folder = 'beamspecbatches';
  82. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  83. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  84. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  85. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  86. % output folders
  87. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  88. geometry_header_filename = 'geometryHeader.txt';
  89. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  90. % end of user-defined parameters
  91. % check the validity of the user-defined variables
  92. if xpmin >= xpmax
  93. error('xpmin must be less than xpmax.');
  94. end
  95. if ypmin >= ypmax
  96. error('ypmin must be less than ypmax.');b
  97. end
  98. if phimin > phimax
  99. error('phimin must be less than or equal to phimax.');
  100. end
  101. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  102. error('Mxp, Nyp, and Nphi must be greater than zero.');
  103. end
  104. if SAD < 20
  105. error('It is recommended that the SAD be greater than 20 cm.');
  106. end
  107. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  108. % size of each beam aperture, making them vectors so extension to
  109. % non-uniform aperture sizes becomes obvious
  110. del_xp = (xpmax - xpmin)/Mxp;
  111. del_yp = (ypmax - ypmin)/Nyp;
  112. % Calculate the xp and yp offsets, which lie at the centers of the
  113. % apertures.
  114. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  115. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  116. [M,N,Q] = size(Geometry.rhomw);
  117. START = single(Geometry.start - iso);
  118. INC = single(Geometry.voxel_size);
  119. % define the tumor mask
  120. tumorMask = zeros(size(Geometry.rhomw),'single');
  121. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  122. BW = bwdist(tumorMask);
  123. tumorMaskExp = tumorMask;
  124. tumorMaskExp(BW <= 4) = 1;
  125. P = zeros(Mxp,Nphi);
  126. fprintf('Checking beam''s eye view ...\n');
  127. for p=1:Nphi
  128. % ir and jr form the beam's eye view (BEV)
  129. ir = [-sin(phi(p)); cos(phi(p)); 0];
  130. jr = [0 0 1]';
  131. % kr denotes the beam direction
  132. kr = [cos(phi(p)); sin(phi(p)); 0];
  133. for m=1:Mxp
  134. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  135. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  136. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  137. if ~isempty(indVisited)
  138. P(m,p) = max(deffVisited);
  139. end
  140. end
  141. end
  142. fprintf('Finished checking BEV\n');
  143. % load data required for the dose calculator
  144. load(kernel_file);
  145. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  146. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  147. % convert Geometry and kernels to single
  148. f = fieldnames(Kernels);
  149. for k=1:length(f)
  150. if isnumeric(getfield(Kernels,f{k}))
  151. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  152. end
  153. end
  154. f = fieldnames(Geometry);
  155. for k=1:length(f)
  156. if isnumeric(getfield(Geometry,f{k}))
  157. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  158. end
  159. end
  160. % account for isocenter
  161. Geometry.start = single(Geometry.start - iso);
  162. % find the total number of beams
  163. Nbeam = Nphi*Mxp*Nyp;
  164. batch_num = 0; % start the count for the number of total batches
  165. % fill up a cell array of beam structures, grouped by batch
  166. clear batches;
  167. batch_num = 0;
  168. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  169. rotNum = 0;
  170. % calculate beams for all source directions and apertures
  171. for k=1:Nphi % loop through all gantry angles
  172. % calculate the source location for a helical trajectory
  173. beam.SAD = single(SAD);
  174. % the kp vector is the beam direction, ip and jp span the beam's eye view
  175. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  176. beam.jp = single([0 0 1]);
  177. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  178. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  179. rotNumOld = rotNum;
  180. rotNum = floor(k/51) + 1; % current rotation number
  181. if rotNum - rotNumOld > 0
  182. beam_num = 0; % if the rotation number has changed, start the beam count over
  183. end
  184. for m=1:Mxp % loop through all apertures in the xp-direction
  185. % calculate the beam if the tomotherapy fluence value is non-zero
  186. if P(m,k) > 0
  187. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  188. beam_num = beam_num + 1;
  189. % set the beam aperture parameters
  190. beam.del_xp = single(del_xp);
  191. beam.del_yp = single(del_yp);
  192. beam.xp = single(xp(m));
  193. beam.yp = single(0);
  194. beam.num = single(num); % record the beam number to avoid any later ambiguity
  195. batches{rotNum}{beam_num} = beam;
  196. end
  197. end
  198. end
  199. % merge/split batches
  200. all_beams = horzcat(batches{:});
  201. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  202. batches = cell(num_batches,1);
  203. for k = 1:(num_batches-1)
  204. batches{k} = all_beams(1+num_beams_per_batch*(k-1):num_beams_per_batch*k);
  205. end
  206. batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  207. % Everything else in this file is related to saving the batches in a
  208. % useable form.
  209. if Condor_flag == 1
  210. % delete the old submission file
  211. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  212. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  213. % create folders where batch information will be sent
  214. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  215. % save the kernels
  216. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  217. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  218. % create kernel filenames files
  219. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  220. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  221. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  222. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  223. fprintf(fid,'kernel_header\n');
  224. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  225. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  226. fprintf(fid2,'kernel_header\n');
  227. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  228. fprintf(fid,'kernel_radii\n');
  229. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  230. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  231. fprintf(fid2,'kernel_radii\n');
  232. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  233. fprintf(fid,'kernel_angles\n');
  234. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  235. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  236. fprintf(fid2,'kernel_angles\n');
  237. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  238. fprintf(fid,'kernel_energies\n');
  239. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  240. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  241. fprintf(fid2,'kernel_energies\n');
  242. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  243. fprintf(fid,'kernel_primary\n');
  244. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  245. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  246. fprintf(fid2,'kernel_primary\n');
  247. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  248. fprintf(fid,'kernel_first_scatter\n');
  249. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  250. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  251. fprintf(fid2,'kernel_first_scatter\n');
  252. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  253. fprintf(fid,'kernel_second_scatter\n');
  254. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  255. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  256. fprintf(fid2,'kernel_second_scatter\n');
  257. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  258. fprintf(fid,'kernel_multiple_scatter\n');
  259. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  260. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  261. fprintf(fid2,'kernel_multiple_scatter\n');
  262. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  263. fprintf(fid,'kernel_brem_annih\n');
  264. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  265. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  266. fprintf(fid2,'kernel_brem_annih\n');
  267. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  268. fprintf(fid,'kernel_total\n');
  269. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  270. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  271. fprintf(fid2,'kernel_total\n');
  272. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  273. fprintf(fid,'kernel_fluence\n');
  274. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  275. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  276. fprintf(fid2,'kernel_fluence\n');
  277. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  278. fprintf(fid,'kernel_mu\n');
  279. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  280. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  281. fprintf(fid2,'kernel_mu\n');
  282. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  283. fprintf(fid,'kernel_mu_en\n');
  284. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  285. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  286. fprintf(fid2,'kernel_mu_en\n');
  287. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  288. fclose(fid);
  289. end
  290. % name for the condor submit file that will be used
  291. condor_submit_file = 'convolutionSubmit.txt';
  292. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  293. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  294. % check the geometry file to ensure that it's not in Hounsfield units
  295. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  296. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  297. end
  298. geometry_folder = 'geometryfiles';
  299. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  300. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  301. if Condor_flag == 1
  302. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  303. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  304. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  305. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  306. % create geometry filenames files
  307. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  308. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  309. fprintf(fid,'geometry_header\n');
  310. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  311. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  312. fprintf(fid2,'geometry_header\n');
  313. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  314. fprintf(fid,'geometry_density\n');
  315. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  316. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  317. fprintf(fid2,'geometry_density\n');
  318. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  319. fclose(fid);
  320. % write command file
  321. % TODO consistent naming throughout script
  322. for k = 1:numel(batches)
  323. fid = fopen(fullfile(patient_dir,sprintf('run%d.cmd',k-1)), 'w');
  324. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  325. fullfile(patient_dir, kernel_filenames_condor),...
  326. fullfile(patient_dir, geometry_filenames_condor),...
  327. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  328. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  329. fclose(fid);
  330. end
  331. % write the condor submit file
  332. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  333. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  334. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  335. % fprintf(fid,'###############################################################\n');
  336. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  337. % fprintf(fid,'###############################################################\n\n');
  338. % fprintf(fid,'copy_to_spool = false\n');
  339. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  340. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  341. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  342. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  343. % fprintf(fid,['Queue ' num2str(Nrot)]);
  344. % fclose(fid);
  345. % % write the condor submit file
  346. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  347. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  348. fid = fopen([condor_folder '/' condor_submit_file],'w');
  349. fprintf(fid,'###############################################################\n');
  350. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  351. fprintf(fid,'###############################################################\n\n');
  352. fprintf(fid,'copy_to_spool = false\n');
  353. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  354. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  355. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  356. fprintf(fid,['Request_memory = 1000' '\n']);
  357. fprintf(fid,['Request_disk = 500000' '\n']);
  358. fprintf(fid,['Output = $(Cluster).out' '\n']);
  359. fprintf(fid,['Log = $(Cluster).log' '\n']);
  360. fprintf(fid,['Error = $(Cluster).err' '\n']);
  361. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  362. % fclose(fid);
  363. end
  364. % write the batches to files
  365. for n=1:numel(batches)
  366. batch = batches{n}; % current batch
  367. if Condor_flag == 1
  368. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  369. end
  370. end
  371. % for k = 1:numel(batches)
  372. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  373. % end
  374. % Ask for User option to run the dose calculation locally on the computer
  375. % or just to get necessary files for CHTC server
  376. % 'y' means run locally, 'n' means not to run locally on the computer
  377. strBeamlet = '';
  378. while(1)
  379. if strcmpi('y',strBeamlet)
  380. break;
  381. elseif strcmpi('n',strBeamlet)
  382. break;
  383. end
  384. strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  385. end
  386. if(strcmpi('y',strBeamlet))
  387. for k = 1:numel(batches)
  388. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  389. end
  390. end