helicalDosecalcSetup7.m 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. %%
  2. % This version was modified by Peter Ferjancic to accept .nrrd file format
  3. % for target. It was also rollbacked on some parameters back to the
  4. % clinical system settings.
  5. % This file has been modified by Surendra Prajapati especially to run
  6. % WiscPlan for KV beams. Works for running locally as well as in Server.
  7. %
  8. % RTF 11/4/05
  9. % Sets up the run files needed for running a Condor convolution
  10. % superposition dose calculation with photon beams.
  11. % Versions of the convolution code that run in both Windows XP, Condor, and
  12. % directly through Matlab can all be created here. The only real
  13. % differences between the files are in the access conventions, which just%
  14. % This has to do with switching forward slashes with backslashes.
  15. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  16. % Also edit:
  17. % Kernel should always be named Kernels.mat
  18. function helicalDosecalcSetup7(patient_dir)
  19. % -- INPUT:
  20. % patient_dir: specify where kernel and [geometry] files are located
  21. num_batches = 4; % number of cores you want to run the beam calculation
  22. iso = [0 0 0]; % Point about which gantry rotations begin
  23. SAD = 85; % source-axis distance for the x-ray source ##
  24. pitch = 0.86; % fraction of beam with couch translates per rotation
  25. % define the overall beam field size for each beam angle
  26. % xpmin = -0.5; % -field width / 2
  27. % xpmax = 0.5; % +field width / 2
  28. % ypmin = -0.5; % -jaw width / 2
  29. % ypmax = 0.5; % +jaw width / 2
  30. % ##
  31. xpmin = -20.0; % -field width / 2
  32. xpmax = 20.0; % +field width / 2
  33. ypmin = -0.3125; % total jaw width is 0.625 cm
  34. ypmax = 0.3125;
  35. % y-prime points in the z-direction in the CT coordinate system
  36. % Number of beamlets in the BEV for each direction
  37. Mxp = 20; % Mxp = 64; number of leaves;
  38. Nyp = 1; % always 1 for Tomo due to binary mlc
  39. % ============================================= End of user-supplied inputs
  40. executable_path = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  41. kernel_file = 'Kernels.mat';
  42. geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  43. load(geometry_file);
  44. ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  45. [target_idx, okay] = listdlg('ListString', ROI_names, ...
  46. 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  47. 'PromptString', 'Please select the target ROI for beamlet calc. ');
  48. if okay ~= 1
  49. msgbox('Plan creation aborted');
  50. return;
  51. end
  52. targetMask = zeros(size(Geometry.data));
  53. targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  54. % Grozomah - targetMask needs to get a 'double' matrix with the location of
  55. % the target
  56. targetMaskZ = sum(sum(targetMask,1),2);
  57. zBow = find(targetMaskZ>0, 1, 'first')*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  58. zStern = find(targetMaskZ>0, 1, 'last')*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  59. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  60. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  61. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  62. % flags used to select which calculations will be set up
  63. Condor_flag = 1;
  64. ptvInd = target_idx; % PTV index in Geometry.ROIS
  65. fieldWidth = ypmax - ypmin;
  66. % total number of rotations required for treatment
  67. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  68. % Nphi = Nrot*51; % number of angles used in the calculation
  69. Nphi = Nrot*21; % Grozomah
  70. % define the limits of the angles that will be used for the calculation
  71. % ##phimin = 0; % starting angle in radians
  72. % ##phimax = 2*pi*Nphi;
  73. phi = [0:Nphi-1]/Nphi *2*pi*Nrot;
  74. condor_folder = patient_dir;
  75. winxp_folder = 'winxp';
  76. % create names for condor input and output folders
  77. input_folder = '.';
  78. output_folder = '.';
  79. % name of the convolution/superposition executable, which will be in the
  80. % 'code' folder of each respective run type folder
  81. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  82. winxp_executable_name = 'convolution.exe';
  83. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  84. % set the beam parameters, assuming a helical beam trajectory
  85. % folders that will be inside the 'input' folder
  86. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  87. beamspec_batches_folder = 'beamspecbatches';
  88. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  89. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  90. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  91. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  92. % output folders
  93. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  94. geometry_header_filename = 'geometryHeader.txt';
  95. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  96. % end of user-defined parameters
  97. % check the validity of the user-defined variables
  98. if xpmin >= xpmax
  99. error('xpmin must be less than xpmax.');
  100. end
  101. if ypmin >= ypmax
  102. error('ypmin must be less than ypmax.');b
  103. end
  104. % if phimin > phimax
  105. % error('phimin must be less than or equal to phimax.');
  106. % end
  107. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  108. error('Mxp, Nyp, and Nphi must be greater than zero.');
  109. end
  110. if SAD < 50
  111. error('It is recommended that the SAD be greater than 50 cm.');
  112. end
  113. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  114. % size of each beam aperture, making them vectors so extension to
  115. % non-uniform aperture sizes becomes obvious
  116. del_xp = (xpmax - xpmin)/Mxp;
  117. del_yp = (ypmax - ypmin)/Nyp;
  118. % Calculate the xp and yp offsets, which lie at the centers of the
  119. % apertures.
  120. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  121. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  122. [M,N,Q] = size(Geometry.rhomw);
  123. START = single(Geometry.start - iso);
  124. INC = single(Geometry.voxel_size);
  125. % Grozomah ##
  126. % START(1) = START(1)/10;
  127. % START(2) = START(2)/10;
  128. % INC(1) = INC(1)/10;
  129. % INC(2) = INC(2)/10;
  130. % END= START+[32,32,40].*INC
  131. % define the tumor mask
  132. tumorMask = zeros(size(Geometry.rhomw),'single');
  133. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  134. BW = bwdist(tumorMask);
  135. tumorMaskExp = tumorMask;
  136. tumorMaskExp(BW <= 4) = 1;
  137. P = zeros(Mxp,Nphi);
  138. fprintf('Checking beam''s eye view ...\n');
  139. for p=1:Nphi
  140. % ir and jr form the beam's eye view (BEV)
  141. ir = [-sin(phi(p)); cos(phi(p)); 0];
  142. jr = [0 0 1]';
  143. % kr denotes the beam direction
  144. kr = [cos(phi(p)); sin(phi(p)); 0];
  145. for m=1:Mxp
  146. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  147. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  148. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  149. if ~isempty(indVisited)
  150. P(m,p) = max(deffVisited);
  151. end
  152. end
  153. end
  154. fprintf('Finished checking BEV\n');
  155. % load data required for the dose calculator
  156. load(kernel_file);
  157. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  158. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  159. % convert Geometry and kernels to single
  160. f = fieldnames(Kernels);
  161. for k=1:length(f)
  162. if isnumeric(getfield(Kernels,f{k}))
  163. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  164. end
  165. end
  166. f = fieldnames(Geometry);
  167. for k=1:length(f)
  168. if isnumeric(getfield(Geometry,f{k}))
  169. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  170. end
  171. end
  172. % account for isocenter
  173. Geometry.start = single(Geometry.start - iso);
  174. % find the total number of beams
  175. Nbeam = Nphi*Mxp*Nyp;
  176. batch_num = 0; % start the count for the number of total batches
  177. % fill up a cell array of beam structures, grouped by batch
  178. clear batches;
  179. batch_num = 0;
  180. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  181. rotNum = 0;
  182. % calculate beams for all source directions and apertures
  183. for k=1:Nphi % loop through all gantry angles
  184. % calculate the source location for a helical trajectory
  185. beam.SAD = single(SAD);
  186. % the kp vector is the beam direction, ip and jp span the beam's eye view
  187. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  188. beam.jp = single([0 0 1]);
  189. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  190. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  191. rotNumOld = rotNum;
  192. rotNum = floor(k/51) + 1; % current rotation number
  193. if rotNum - rotNumOld > 0
  194. beam_num = 0; % if the rotation number has changed, start the beam count over
  195. end
  196. for m=1:Mxp % loop through all apertures in the xp-direction
  197. % calculate the beam if the tomotherapy fluence value is non-zero
  198. if P(m,k) > 0
  199. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  200. beam_num = beam_num + 1;
  201. % set the beam aperture parameters
  202. beam.del_xp = single(del_xp);
  203. beam.del_yp = single(del_yp);
  204. beam.xp = single(xp(m));
  205. beam.yp = single(0);
  206. beam.num = single(num); % record the beam number to avoid any later ambiguity
  207. batches{rotNum}{beam_num} = beam;
  208. end
  209. end
  210. end
  211. % merge/split batches
  212. all_beams = horzcat(batches{:});
  213. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  214. batches = cell(num_batches,1);
  215. for k = 1:(num_batches-1)
  216. batches{k} = all_beams(1+num_beams_per_batch*(k-1):num_beams_per_batch*k);
  217. end
  218. batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  219. % Everything else in this file is related to saving the batches in a
  220. % useable form.
  221. if Condor_flag == 1
  222. % delete the old submission file
  223. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  224. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  225. % create folders where batch information will be sent
  226. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  227. % save the kernels
  228. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  229. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  230. % create kernel filenames files
  231. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  232. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  233. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  234. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  235. fprintf(fid,'kernel_header\n');
  236. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  237. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  238. fprintf(fid2,'kernel_header\n');
  239. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  240. fprintf(fid,'kernel_radii\n');
  241. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  242. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  243. fprintf(fid2,'kernel_radii\n');
  244. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  245. fprintf(fid,'kernel_angles\n');
  246. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  247. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  248. fprintf(fid2,'kernel_angles\n');
  249. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  250. fprintf(fid,'kernel_energies\n');
  251. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  252. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  253. fprintf(fid2,'kernel_energies\n');
  254. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  255. fprintf(fid,'kernel_primary\n');
  256. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  257. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  258. fprintf(fid2,'kernel_primary\n');
  259. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  260. fprintf(fid,'kernel_first_scatter\n');
  261. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  262. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  263. fprintf(fid2,'kernel_first_scatter\n');
  264. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  265. fprintf(fid,'kernel_second_scatter\n');
  266. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  267. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  268. fprintf(fid2,'kernel_second_scatter\n');
  269. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  270. fprintf(fid,'kernel_multiple_scatter\n');
  271. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  272. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  273. fprintf(fid2,'kernel_multiple_scatter\n');
  274. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  275. fprintf(fid,'kernel_brem_annih\n');
  276. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  277. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  278. fprintf(fid2,'kernel_brem_annih\n');
  279. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  280. fprintf(fid,'kernel_total\n');
  281. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  282. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  283. fprintf(fid2,'kernel_total\n');
  284. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  285. fprintf(fid,'kernel_fluence\n');
  286. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  287. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  288. fprintf(fid2,'kernel_fluence\n');
  289. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  290. fprintf(fid,'kernel_mu\n');
  291. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  292. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  293. fprintf(fid2,'kernel_mu\n');
  294. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  295. fprintf(fid,'kernel_mu_en\n');
  296. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  297. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  298. fprintf(fid2,'kernel_mu_en\n');
  299. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  300. fclose(fid);
  301. end
  302. % name for the condor submit file that will be used
  303. condor_submit_file = 'convolutionSubmit.txt';
  304. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  305. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  306. % check the geometry file to ensure that it's not in Hounsfield units
  307. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  308. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  309. end
  310. geometry_folder = 'geometryfiles';
  311. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  312. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  313. if Condor_flag == 1
  314. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  315. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  316. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  317. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  318. % create geometry filenames files
  319. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  320. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  321. fprintf(fid,'geometry_header\n');
  322. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  323. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  324. fprintf(fid2,'geometry_header\n');
  325. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  326. fprintf(fid,'geometry_density\n');
  327. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  328. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  329. fprintf(fid2,'geometry_density\n');
  330. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  331. fclose(fid);
  332. % write command file
  333. % TODO consistent naming throughout script
  334. for k = 1:numel(batches)
  335. fid = fopen(fullfile(patient_dir,sprintf('run%d.cmd',k-1)), 'w');
  336. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  337. fullfile(patient_dir, kernel_filenames_condor),...
  338. fullfile(patient_dir, geometry_filenames_condor),...
  339. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  340. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  341. fclose(fid);
  342. end
  343. % write the condor submit file
  344. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  345. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  346. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  347. % fprintf(fid,'###############################################################\n');
  348. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  349. % fprintf(fid,'###############################################################\n\n');
  350. % fprintf(fid,'copy_to_spool = false\n');
  351. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  352. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  353. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  354. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  355. % fprintf(fid,['Queue ' num2str(Nrot)]);
  356. % fclose(fid);
  357. % % write the condor submit file
  358. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  359. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  360. fid = fopen([condor_folder '/' condor_submit_file],'w');
  361. fprintf(fid,'###############################################################\n');
  362. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  363. fprintf(fid,'###############################################################\n\n');
  364. fprintf(fid,'copy_to_spool = false\n');
  365. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  366. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  367. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  368. fprintf(fid,['Request_memory = 1000' '\n']);
  369. fprintf(fid,['Request_disk = 500000' '\n']);
  370. fprintf(fid,['Output = $(Cluster).out' '\n']);
  371. fprintf(fid,['Log = $(Cluster).log' '\n']);
  372. fprintf(fid,['Error = $(Cluster).err' '\n']);
  373. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  374. % fclose(fid);
  375. end
  376. % write the batches to files
  377. for n=1:numel(batches)
  378. batch = batches{n}; % current batch
  379. if Condor_flag == 1
  380. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  381. end
  382. end
  383. save([patient_dir '\all_beams.mat'], 'all_beams');
  384. % for k = 1:numel(batches)
  385. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  386. % end
  387. % Ask for User option to run the dose calculation locally on the computer
  388. % or just to get necessary files for CHTC server
  389. % 'y' means run locally, 'n' means not to run locally on the computer
  390. strBeamlet = '';
  391. while(1)
  392. if strcmpi('y',strBeamlet)
  393. break;
  394. elseif strcmpi('n',strBeamlet)
  395. break;
  396. end
  397. strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  398. end
  399. t = datetime('now');
  400. disp(['Calculating ' num2str(size(all_beams, 2)) ' beamlets in ' num2str(size(batches, 1))...
  401. ' batches. Start: ' datestr(t)])
  402. if(strcmpi('y',strBeamlet))
  403. for k = 1:numel(batches)
  404. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  405. end
  406. end
  407. end