helicalDosecalcSetup7.m 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. %%
  2. % This version was modified by Peter Ferjancic to accept .nrrd file format
  3. % for target. It was also rollbacked on some parameters back to the
  4. % clinical system settings.
  5. % This file has been modified by Surendra Prajapati especially to run
  6. % WiscPlan for KV beams. Works for running locally as well as in Server.
  7. %
  8. % RTF 11/4/05
  9. % Sets up the run files needed for running a Condor convolution
  10. % superposition dose calculation with photon beams.
  11. % Versions of the convolution code that run in both Windows XP, Condor, and
  12. % directly through Matlab can all be created here. The only real
  13. % differences between the files are in the access conventions, which just%
  14. % This has to do with switching forward slashes with backslashes.
  15. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  16. % Also edit:
  17. % Kernel should always be named Kernels.mat
  18. function num_batches = helicalDosecalcSetup7(patient_dir)
  19. % -- INPUT:
  20. % patient_dir: specify where kernel and [geometry] files are located
  21. iso = [0 0 0]; % Point about which gantry rotations begin
  22. SAD = 85; % source-axis distance for the x-ray source ##
  23. pitch = 0.86; % fraction of beam with couch translates per rotation
  24. %% --- make the figure prompt for number of angles and beamlets
  25. str = inputdlg({'Enter number of calc cores', 'Enter number of angles (51 default)', ...
  26. 'Enter number of beamlets (64 default)'}, 'input', [1,35], {'3', '51', '64'});
  27. num_batches = str2double(str{1}); % number of cores you want to run the beam calculation
  28. % -- (3 for a 4-core comp to prevent lockdown)
  29. N_angles = str2double(str{2}); % 51 for full resolution
  30. Mxp = str2double(str{3}); % Mxp = 64; number of MLC leaves;
  31. Nyp = 1; % always 1 for Tomo due to binary mlc
  32. % define the overall beam field size for each beam angle
  33. % beam is 40 cm wide in transverse direction and 1-5 cm (usually 2) in y
  34. % direction.
  35. % isocenter is 85 cm from source, ends of jaws are 23 cm from source
  36. xpmin = -20.0; % -field width / 2
  37. xpmax = 20.0; % +field width / 2
  38. % ypmin = -0.3125; % total jaw width is 0.625 cm
  39. % ypmax = 0.3125;
  40. ypmin = -0.5; % total jaw width is 1 cm
  41. ypmax = 0.5;
  42. % ypmin = -1.25; % total jaw width is 2.5 cm
  43. % ypmax = 1.25;
  44. % y-prime points in the z-direction in the CT coordinate system
  45. % ============================================= End of user-supplied inputs
  46. executable_path = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  47. kernel_file = 'Kernels.mat';
  48. geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  49. load(geometry_file);
  50. ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  51. [target_idx, okay] = listdlg('ListString', ROI_names, ...
  52. 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  53. 'PromptString', 'Please select the target ROI for beamlet calc. ');
  54. if okay ~= 1
  55. msgbox('Plan creation aborted');
  56. return;
  57. end
  58. targetMask = zeros(size(Geometry.data));
  59. targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  60. % Grozomah - targetMask needs to get a 'double' matrix with the location of
  61. % the target
  62. targetMaskZ = sum(sum(targetMask,1),2);
  63. zBow = (find(targetMaskZ>0, 1, 'first')-1)*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  64. zStern = (find(targetMaskZ>0, 1, 'last')+1)*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  65. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  66. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  67. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  68. % flags used to select which calculations will be set up
  69. Condor_flag = 1;
  70. ptvInd = target_idx; % PTV index in Geometry.ROIS
  71. fieldWidth = ypmax - ypmin;
  72. % total number of rotations required for treatment
  73. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  74. % Nphi = Nrot*51; % number of angles used in the calculation
  75. Nphi = Nrot * N_angles; % Grozomah
  76. % define the limits of the angles that will be used for the calculation
  77. % ##phimin = 0; % starting angle in radians
  78. % ##phimax = 2*pi*Nphi;
  79. phi = [0:Nphi-1]/Nphi *2*pi*Nrot;
  80. condor_folder = patient_dir;
  81. winxp_folder = 'winxp';
  82. % create names for condor input and output folders
  83. input_folder = '.';
  84. output_folder = '.';
  85. % name of the convolution/superposition executable, which will be in the
  86. % 'code' folder of each respective run type folder
  87. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  88. winxp_executable_name = 'convolution.exe';
  89. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  90. % set the beam parameters, assuming a helical beam trajectory
  91. % folders that will be inside the 'input' folder
  92. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  93. beamspec_batches_folder = 'beamspecbatches';
  94. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  95. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  96. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  97. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  98. % output folders
  99. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  100. geometry_header_filename = 'geometryHeader.txt';
  101. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  102. % end of user-defined parameters
  103. % check the validity of the user-defined variables
  104. if xpmin >= xpmax
  105. error('xpmin must be less than xpmax.');
  106. end
  107. if ypmin >= ypmax
  108. error('ypmin must be less than ypmax.');b
  109. end
  110. % if phimin > phimax
  111. % error('phimin must be less than or equal to phimax.');
  112. % end
  113. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  114. error('Mxp, Nyp, and Nphi must be greater than zero.');
  115. end
  116. if SAD < 50
  117. error('It is recommended that the SAD be greater than 50 cm.');
  118. end
  119. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  120. % size of each beam aperture, making them vectors so extension to
  121. % non-uniform aperture sizes becomes obvious
  122. del_xp = (xpmax - xpmin)/Mxp;
  123. del_yp = (ypmax - ypmin)/Nyp;
  124. % Calculate the xp and yp offsets, which lie at the centers of the
  125. % apertures.
  126. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  127. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  128. [M,N,Q] = size(Geometry.rhomw);
  129. START = single(Geometry.start - iso);
  130. INC = single(Geometry.voxel_size);
  131. % Grozomah ##
  132. % START(1) = START(1)/10;
  133. % START(2) = START(2)/10;
  134. % INC(1) = INC(1)/10;
  135. % INC(2) = INC(2)/10;
  136. % END= START+[32,32,40].*INC
  137. % define the tumor mask
  138. tumorMask = zeros(size(Geometry.rhomw),'single');
  139. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  140. BW = bwdist(tumorMask);
  141. tumorMaskExp = tumorMask;
  142. tumorMaskExp(BW <= 4) = 1;
  143. P = zeros(Mxp,Nphi);
  144. fprintf('Checking beam''s eye view ...\n');
  145. for p=1:Nphi
  146. % ir and jr form the beam's eye view (BEV)
  147. ir = [-sin(phi(p)); cos(phi(p)); 0];
  148. jr = [0 0 1]';
  149. % kr denotes the beam direction
  150. kr = [cos(phi(p)); sin(phi(p)); 0];
  151. for m=1:Mxp
  152. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  153. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  154. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  155. if ~isempty(indVisited)
  156. P(m,p) = max(deffVisited);
  157. end
  158. end
  159. end
  160. fprintf('Finished checking BEV\n');
  161. % load data required for the dose calculator
  162. load(kernel_file);
  163. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  164. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  165. % convert Geometry and kernels to single
  166. f = fieldnames(Kernels);
  167. for k=1:length(f)
  168. if isnumeric(getfield(Kernels,f{k}))
  169. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  170. end
  171. end
  172. f = fieldnames(Geometry);
  173. for k=1:length(f)
  174. if isnumeric(getfield(Geometry,f{k}))
  175. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  176. end
  177. end
  178. % account for isocenter
  179. Geometry.start = single(Geometry.start - iso);
  180. % find the total number of beams
  181. Nbeam = Nphi*Mxp*Nyp;
  182. batch_num = 0; % start the count for the number of total batches
  183. % fill up a cell array of beam structures, grouped by batch
  184. clear batches;
  185. batch_num = 0;
  186. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  187. rotNum = 0;
  188. % calculate beams for all source directions and apertures
  189. for k=1:Nphi % loop through all gantry angles
  190. % calculate the source location for a helical trajectory
  191. beam.SAD = single(SAD);
  192. % the kp vector is the beam direction, ip and jp span the beam's eye view
  193. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  194. beam.jp = single([0 0 1]);
  195. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  196. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  197. rotNumOld = rotNum;
  198. rotNum = floor(k/51) + 1; % current rotation number
  199. if rotNum - rotNumOld > 0
  200. beam_num = 0; % if the rotation number has changed, start the beam count over
  201. end
  202. for m=1:Mxp % loop through all apertures in the xp-direction
  203. % calculate the beam if the tomotherapy fluence value is non-zero
  204. if P(m,k) > 0
  205. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  206. beam_num = beam_num + 1;
  207. % set the beam aperture parameters
  208. beam.del_xp = single(del_xp);
  209. beam.del_yp = single(del_yp);
  210. beam.xp = single(xp(m));
  211. beam.yp = single(0);
  212. beam.num = single(num); % record the beam number to avoid any later ambiguity
  213. batches{rotNum}{beam_num} = beam;
  214. end
  215. end
  216. end
  217. % merge/split batches
  218. all_beams = horzcat(batches{:});
  219. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  220. batches = cell(num_batches,1);
  221. for k = 1:(num_batches-1)
  222. batches{k} = all_beams(1+num_beams_per_batch*(k-1):num_beams_per_batch*k);
  223. end
  224. batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  225. % Everything else in this file is related to saving the batches in a
  226. % useable form.
  227. if Condor_flag == 1
  228. % delete the old submission file
  229. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  230. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  231. % create folders where batch information will be sent
  232. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  233. % save the kernels
  234. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  235. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  236. % create kernel filenames files
  237. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  238. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  239. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  240. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  241. fprintf(fid,'kernel_header\n');
  242. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  243. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  244. fprintf(fid2,'kernel_header\n');
  245. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  246. fprintf(fid,'kernel_radii\n');
  247. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  248. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  249. fprintf(fid2,'kernel_radii\n');
  250. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  251. fprintf(fid,'kernel_angles\n');
  252. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  253. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  254. fprintf(fid2,'kernel_angles\n');
  255. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  256. fprintf(fid,'kernel_energies\n');
  257. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  258. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  259. fprintf(fid2,'kernel_energies\n');
  260. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  261. fprintf(fid,'kernel_primary\n');
  262. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  263. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  264. fprintf(fid2,'kernel_primary\n');
  265. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  266. fprintf(fid,'kernel_first_scatter\n');
  267. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  268. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  269. fprintf(fid2,'kernel_first_scatter\n');
  270. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  271. fprintf(fid,'kernel_second_scatter\n');
  272. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  273. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  274. fprintf(fid2,'kernel_second_scatter\n');
  275. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  276. fprintf(fid,'kernel_multiple_scatter\n');
  277. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  278. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  279. fprintf(fid2,'kernel_multiple_scatter\n');
  280. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  281. fprintf(fid,'kernel_brem_annih\n');
  282. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  283. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  284. fprintf(fid2,'kernel_brem_annih\n');
  285. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  286. fprintf(fid,'kernel_total\n');
  287. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  288. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  289. fprintf(fid2,'kernel_total\n');
  290. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  291. fprintf(fid,'kernel_fluence\n');
  292. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  293. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  294. fprintf(fid2,'kernel_fluence\n');
  295. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  296. fprintf(fid,'kernel_mu\n');
  297. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  298. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  299. fprintf(fid2,'kernel_mu\n');
  300. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  301. fprintf(fid,'kernel_mu_en\n');
  302. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  303. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  304. fprintf(fid2,'kernel_mu_en\n');
  305. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  306. fclose(fid);
  307. end
  308. % name for the condor submit file that will be used
  309. condor_submit_file = 'convolutionSubmit.txt';
  310. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  311. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  312. % check the geometry file to ensure that it's not in Hounsfield units
  313. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  314. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  315. end
  316. geometry_folder = 'geometryfiles';
  317. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  318. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  319. if Condor_flag == 1
  320. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  321. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  322. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  323. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  324. % create geometry filenames files
  325. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  326. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  327. fprintf(fid,'geometry_header\n');
  328. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  329. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  330. fprintf(fid2,'geometry_header\n');
  331. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  332. fprintf(fid,'geometry_density\n');
  333. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  334. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  335. fprintf(fid2,'geometry_density\n');
  336. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  337. fclose(fid);
  338. % write command file
  339. % TODO consistent naming throughout script
  340. for k = 1:numel(batches)
  341. fid = fopen(fullfile(patient_dir,sprintf('run%d.cmd',k-1)), 'w');
  342. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  343. fullfile(patient_dir, kernel_filenames_condor),...
  344. fullfile(patient_dir, geometry_filenames_condor),...
  345. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  346. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  347. fclose(fid);
  348. end
  349. % write the condor submit file
  350. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  351. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  352. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  353. % fprintf(fid,'###############################################################\n');
  354. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  355. % fprintf(fid,'###############################################################\n\n');
  356. % fprintf(fid,'copy_to_spool = false\n');
  357. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  358. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  359. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  360. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  361. % fprintf(fid,['Queue ' num2str(Nrot)]);
  362. % fclose(fid);
  363. % % write the condor submit file
  364. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  365. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  366. fid = fopen([condor_folder '/' condor_submit_file],'w');
  367. fprintf(fid,'###############################################################\n');
  368. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  369. fprintf(fid,'###############################################################\n\n');
  370. fprintf(fid,'copy_to_spool = false\n');
  371. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  372. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  373. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  374. fprintf(fid,['Request_memory = 1000' '\n']);
  375. fprintf(fid,['Request_disk = 500000' '\n']);
  376. fprintf(fid,['Output = $(Cluster).out' '\n']);
  377. fprintf(fid,['Log = $(Cluster).log' '\n']);
  378. fprintf(fid,['Error = $(Cluster).err' '\n']);
  379. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  380. % fclose(fid);
  381. end
  382. % write the batches to files
  383. for n=1:numel(batches)
  384. batch = batches{n}; % current batch
  385. if Condor_flag == 1
  386. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  387. end
  388. end
  389. save([patient_dir '\all_beams.mat'], 'all_beams');
  390. % for k = 1:numel(batches)
  391. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  392. % end
  393. % Ask for User option to run the dose calculation locally on the computer
  394. % or just to get necessary files for CHTC server
  395. % 'y' means run locally, 'n' means not to run locally on the computer
  396. strBeamlet = '';
  397. while(1)
  398. if strcmpi('y',strBeamlet)
  399. break;
  400. elseif strcmpi('n',strBeamlet)
  401. break;
  402. end
  403. strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  404. end
  405. t = datetime('now');
  406. disp(['Calculating ' num2str(size(all_beams, 2)) ' beamlets in ' num2str(size(batches, 1))...
  407. ' batches. Start: ' datestr(t)])
  408. if(strcmpi('y',strBeamlet))
  409. for k = 1:numel(batches)
  410. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  411. end
  412. end
  413. end