|
@@ -33,7 +33,7 @@ class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
|
|
|
|
|
|
# Dropdown menu za izbiro metode
|
|
|
self.rotationMethodComboBox = qt.QComboBox()
|
|
|
- self.rotationMethodComboBox.addItems(["Kabsch", "Horn"])
|
|
|
+ self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"])
|
|
|
self.layout.addWidget(self.rotationMethodComboBox)
|
|
|
|
|
|
# Load button
|
|
@@ -268,6 +268,63 @@ class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
|
|
|
|
|
|
return R
|
|
|
|
|
|
+ def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
|
|
|
+ """
|
|
|
+ Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ moving_points (list or ndarray): List of points to be aligned.
|
|
|
+ fixed_points (list or ndarray): List of reference points.
|
|
|
+ max_iterations (int): Maximum number of iterations.
|
|
|
+ tolerance (float): Convergence tolerance.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ ndarray: Transformed moving points.
|
|
|
+ ndarray: Optimal rotation matrix.
|
|
|
+ ndarray: Optimal translation vector.
|
|
|
+ """
|
|
|
+ # Convert to numpy arrays
|
|
|
+ moving = np.array(moving_points)
|
|
|
+ fixed = np.array(fixed_points)
|
|
|
+
|
|
|
+ # Initialize transformation
|
|
|
+ R = np.eye(3) # Identity matrix for rotation
|
|
|
+ t = np.zeros(3) # Zero vector for translation
|
|
|
+
|
|
|
+ prev_error = np.inf # Initialize previous error to a large value
|
|
|
+
|
|
|
+ for iteration in range(max_iterations):
|
|
|
+ # Step 1: Find the nearest neighbors (correspondences)
|
|
|
+ distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
|
|
|
+ nearest_indices = np.argmin(distances, axis=1)
|
|
|
+ nearest_points = fixed[nearest_indices]
|
|
|
+
|
|
|
+ # Step 2: Compute the optimal rotation and translation
|
|
|
+ R_new = compute_Kabsch_rotation(moving, nearest_points)
|
|
|
+ centroid_moving = np.mean(moving, axis=0)
|
|
|
+ centroid_fixed = np.mean(nearest_points, axis=0)
|
|
|
+ t_new = centroid_fixed - np.dot(R_new, centroid_moving)
|
|
|
+
|
|
|
+ # Step 3: Apply the transformation
|
|
|
+ moving = np.dot(moving, R_new.T) + t_new
|
|
|
+
|
|
|
+ # Update the cumulative transformation
|
|
|
+ R = np.dot(R_new, R)
|
|
|
+ t = np.dot(R_new, t) + t_new
|
|
|
+
|
|
|
+ # Step 4: Check for convergence
|
|
|
+ mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
|
|
|
+ if np.abs(prev_error - mean_error) < tolerance:
|
|
|
+ print(f"ICP converged after {iteration + 1} iterations.")
|
|
|
+ break
|
|
|
+ prev_error = mean_error
|
|
|
+
|
|
|
+ else:
|
|
|
+ print(f"ICP reached maximum iterations ({max_iterations}).")
|
|
|
+
|
|
|
+ return moving, R, t
|
|
|
+
|
|
|
+
|
|
|
def compute_translation(moving_points, fixed_points, rotation_matrix):
|
|
|
"""
|
|
|
Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
|
|
@@ -326,7 +383,11 @@ class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
|
|
|
shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
|
|
|
imageItem = shNode.GetItemByDataNode(volumeNode)
|
|
|
|
|
|
+ # Pridobi vse atribute za ta element
|
|
|
+ attributeNames = shNode.GetItemAttributeNames(imageItem)
|
|
|
+
|
|
|
#modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
|
|
|
+ #manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
|
|
|
#print(modality)
|
|
|
|
|
|
# Check if the volume is loaded into the scene
|
|
@@ -334,11 +395,13 @@ class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
|
|
|
print(f"Volume {volumeName} not present in the scene.")
|
|
|
continue
|
|
|
|
|
|
+ manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
|
|
|
+
|
|
|
# Determine scan type
|
|
|
- if "cbct" in volumeName.lower():
|
|
|
+ if "varian" in manufacturer.lower():
|
|
|
cbct_list.append(volumeName)
|
|
|
scan_type = "CBCT"
|
|
|
- else:
|
|
|
+ else: #Siemens or phillips imamo CTje
|
|
|
ct_list.append(volumeName)
|
|
|
scan_type = "CT"
|
|
|
|
|
@@ -388,25 +451,40 @@ class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
|
|
|
# print("Rotation Matrix:\n", quaternion_rotation_matrix)
|
|
|
# print("Translation Vector:\n", quaternion_translation_vector)
|
|
|
|
|
|
+ # Primer neporavnanih točk
|
|
|
+ moving_points = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
|
+ fixed_points = np.array([[2, 3, 4], [5, 6, 7], [8, 9, 10]])
|
|
|
+
|
|
|
+ # Uporaba ICP algoritma
|
|
|
+ aligned_points, R, t = icp_algorithm(moving_points, fixed_points)
|
|
|
+
|
|
|
+ print("Poravnane točke:")
|
|
|
+ print(aligned_points)
|
|
|
+ print("Optimalna rotacijska matrika R:")
|
|
|
+ print(R)
|
|
|
+ print("Optimalni translacijski vektor t:")
|
|
|
+ print(t)
|
|
|
+
|
|
|
+
|
|
|
# Izberi metodo glede na uporabnikov izbor
|
|
|
if selectedMethod == "Kabsch":
|
|
|
chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
|
|
|
chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
|
|
|
- print("\nKabsch Method:")
|
|
|
- print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
- print("Translation Vector:\n", chosen_translation_vector)
|
|
|
+ #print("\nKabsch Method:")
|
|
|
+ #print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
+ #print("Translation Vector:\n", chosen_translation_vector)
|
|
|
elif selectedMethod == "Horn":
|
|
|
chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
|
|
|
chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
|
|
|
- print("\nHorn Method:")
|
|
|
- print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
- print("Translation Vector:\n", chosen_translation_vector)
|
|
|
- # elif selectedMethod == "Quaternion":
|
|
|
- # chosen_rotation_matrix = compute_quaternion_rotation(cbct_points, ct_points)
|
|
|
- # chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
|
|
|
- # print("\nQuaternion Method:")
|
|
|
- # print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
- # print("Translation Vector:\n", chosen_translation_vector)
|
|
|
+ #print("\nHorn Method:")
|
|
|
+ #print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
+ #print("Translation Vector:\n", chosen_translation_vector)
|
|
|
+ elif selectedMethod == "Iterative Closest Point (Kabsch)":
|
|
|
+ new_points, chosen_rotation_matrix, chosen_translation_vector = icp_algorithm(cbct_points, ct_points)
|
|
|
+ #chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
|
|
|
+ #print("\Iterative Closest Point Method:")
|
|
|
+ #print("Rotation Matrix:\n", chosen_rotation_matrix)
|
|
|
+ #print("Translation Vector:\n", chosen_translation_vector)
|
|
|
|
|
|
imeTransformNoda = cbct_volume_name + " Transform"
|
|
|
# Ustvari vtkTransformNode in ga poveži z CBCT volumenom
|
|
@@ -428,37 +506,4 @@ class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
|
|
|
#transformed_cbct_image = create_vtk_transform(cbct_image_sitk, chosen_rotation_matrix, chosen_translation_vector)
|
|
|
|
|
|
else:
|
|
|
- print("CBCT ali CT volumen ni bil najden.")
|
|
|
-
|
|
|
-
|
|
|
- # def compute_rigid_transform(moving_points, fixed_points):
|
|
|
- # assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
|
|
|
-
|
|
|
- # # Convert to numpy arrays
|
|
|
- # moving = np.array(moving_points)
|
|
|
- # fixed = np.array(fixed_points)
|
|
|
-
|
|
|
- # # Compute centroids
|
|
|
- # centroid_moving = np.mean(moving, axis=0)
|
|
|
- # centroid_fixed = np.mean(fixed, axis=0)
|
|
|
-
|
|
|
- # # Center the points
|
|
|
- # moving_centered = moving - centroid_moving
|
|
|
- # fixed_centered = fixed - centroid_fixed
|
|
|
-
|
|
|
- # # Compute covariance matrix
|
|
|
- # H = np.dot(moving_centered.T, fixed_centered)
|
|
|
-
|
|
|
- # # SVD decomposition
|
|
|
- # U, _, Vt = np.linalg.svd(H)
|
|
|
- # Rotate_optimal = np.dot(Vt.T, U.T)
|
|
|
-
|
|
|
- # # Correct improper rotation (reflection)
|
|
|
- # if np.linalg.det(Rotate_optimal) < 0:
|
|
|
- # Vt[-1, :] *= -1
|
|
|
- # Rotate_optimal = np.dot(Vt.T, U.T)
|
|
|
-
|
|
|
- # # Compute translation
|
|
|
- # translation = centroid_fixed - np.dot(centroid_moving, Rotate_optimal)
|
|
|
-
|
|
|
- # return Rotate_optimal, translation
|
|
|
+ print("CBCT ali CT volumen ni bil najden.")
|