import os import numpy as np import scipy from scipy.spatial.distance import cdist from scipy.spatial.transform import Rotation as R import slicer from DICOMLib import DICOMUtils from collections import deque # Define a threshold for grouping nearby points (in voxel space) #distance_threshold = 4 # This can be adjusted based on your dataset # Function to group points that are close to each other def group_points(points, threshold): grouped_points = [] while points: point = points.pop() # Take one point from the list group = [point] # Start a new group # Find all points close to this one distances = cdist([point], points) # Calculate distances from this point to others close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold] # Add the close points to the group group.extend([points[i] for i in close_points]) # Remove the grouped points from the list points = [point for i, point in enumerate(points) if i not in close_points] # Add the group to the result grouped_points.append(group) return grouped_points def region_growing(image_data, seed, intensity_threshold, max_distance): dimensions = image_data.GetDimensions() visited = set() region = [] queue = deque([seed]) while queue: x, y, z = queue.popleft() if (x, y, z) in visited: continue visited.add((x, y, z)) voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0) if voxel_value >= intensity_threshold: region.append((x, y, z)) # Add neighbors within bounds for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]: nx, ny, nz = x + dx, y + dy, z + dz if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]: if (nx, ny, nz) not in visited: queue.append((nx, ny, nz)) return region def detect_points_region_growing(volume_name, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=120, max_distance=9, centroid_merge_threshold=5): volume_node = slicer.util.getNode(volume_name) if not volume_node: raise RuntimeError(f"Volume {volume_name} not found.") image_data = volume_node.GetImageData() matrix = vtk.vtkMatrix4x4() volume_node.GetIJKToRASMatrix(matrix) dimensions = image_data.GetDimensions() detected_regions = [] # Check if it's CT or CBCT is_cbct = "cbct" in volume_name.lower() if is_cbct: valid_x_min, valid_x_max = 0, dimensions[0] - 1 valid_y_min, valid_y_max = 0, dimensions[1] - 1 valid_z_min, valid_z_max = 0, dimensions[2] - 1 else: valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1) valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1) valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1) visited = set() def grow_region(x, y, z): if (x, y, z) in visited: return None voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0) if voxel_value < intensity_threshold: return None region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance) if region: for point in region: visited.add(tuple(point)) return region return None regions = [] for z in range(valid_z_min, valid_z_max + 1): for y in range(valid_y_min, valid_y_max + 1): for x in range(valid_x_min, valid_x_max + 1): region = grow_region(x, y, z) if region: regions.append(region) # Collect centroids using intensity-weighted average centroids = [] for region in regions: points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region]) intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region]) if intensities.sum() > 0: weighted_centroid = np.average(points, axis=0, weights=intensities) max_intensity = intensities.max() centroids.append((np.round(weighted_centroid, 2), max_intensity)) unique_centroids = [] for centroid, intensity in centroids: if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids): unique_centroids.append((centroid, intensity)) markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}") for centroid, intensity in unique_centroids: markups_node.AddControlPoint(*centroid) #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}") return unique_centroids def compute_rigid_transform(moving_points, fixed_points): assert len(moving_points) == len(fixed_points), "Point lists must be the same length." # Convert to numpy arrays moving = np.array(moving_points) fixed = np.array(fixed_points) # Compute centroids centroid_moving = np.mean(moving, axis=0) centroid_fixed = np.mean(fixed, axis=0) # Center the points moving_centered = moving - centroid_moving fixed_centered = fixed - centroid_fixed # Compute covariance matrix H = np.dot(moving_centered.T, fixed_centered) # SVD decomposition U, _, Vt = np.linalg.svd(H) R_optimal = np.dot(Vt.T, U.T) # Correct improper rotation (reflection) if np.linalg.det(R_optimal) < 0: Vt[-1, :] *= -1 R_optimal = np.dot(Vt.T, U.T) # Compute translation translation = centroid_fixed - np.dot(centroid_moving, R_optimal) return R_optimal, translation def apply_transform(points, rotation_matrix, translation_vector): points = np.array(points) transformed_points = np.dot(points, rotation_matrix.T) + translation_vector return transformed_points # Initialize lists and dictionary cbct_list = [] ct_list = [] volume_points_dict = {} # Process loaded volumes for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"): volumeName = volumeNode.GetName() shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene) imageItem = shNode.GetItemByDataNode(volumeNode) modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality') #print(modality) # Check if the volume is loaded into the scene if not slicer.mrmlScene.IsNodePresent(volumeNode): print(f"Volume {volumeName} not present in the scene.") continue # Determine scan type if "cbct" in volumeName.lower(): cbct_list.append(volumeName) scan_type = "CBCT" else: ct_list.append(volumeName) scan_type = "CT" # Detect points using region growing grouped_points = detect_points_region_growing(volumeName, intensity_threshold=3000) volume_points_dict[(scan_type, volumeName)] = grouped_points # Print the results # print(f"\nCBCT Volumes: {cbct_list}") # print(f"CT Volumes: {ct_list}") # print("\nDetected Points by Volume:") # for (scan_type, vol_name), points in volume_points_dict.items(): # print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.") cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", "CBCT1")]] # Extract only centroids (coordinates) ct_points = [centroid for centroid, _ in volume_points_dict[("CT", "CT")]] # Extract only centroids (coordinates) print("CBCT points: ", np.array(cbct_points)) # Ensure we have enough points for registration if len(cbct_points) >= 3 and len(ct_points) >= 3: rotation_matrix, translation_vector = compute_rigid_transform(cbct_points, ct_points) transformed_cbct_points = apply_transform(cbct_points, rotation_matrix, translation_vector) print("Optimal Rotation Matrix:\n", rotation_matrix) print("Translation Vector:\n", translation_vector) print("Transformed CBCT Points:\n", transformed_cbct_points) else: print("Not enough points for registration.")