import os import numpy as np import scipy from scipy.spatial.distance import cdist from scipy.spatial.transform import Rotation as R import slicer from DICOMLib import DICOMUtils from collections import deque import vtk from slicer.ScriptedLoadableModule import * import qt import matplotlib.pyplot as plt import csv #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read()) class SeekTransformModule(ScriptedLoadableModule): """ Module description shown in the module panel. """ def __init__(self, parent): ScriptedLoadableModule.__init__(self, parent) self.parent.title = "Seek Transform module" self.parent.categories = ["Image Processing"] self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"] self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes." self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen" class SeekTransformModuleWidget(ScriptedLoadableModuleWidget): """ GUI of the module. """ def setup(self): ScriptedLoadableModuleWidget.setup(self) # Dropdown menu za izbiro metode self.rotationMethodComboBox = qt.QComboBox() self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"]) self.layout.addWidget(self.rotationMethodComboBox) # Checkboxi za transformacije self.rotationCheckBox = qt.QCheckBox("Rotation") self.rotationCheckBox.setChecked(True) self.layout.addWidget(self.rotationCheckBox) self.translationCheckBox = qt.QCheckBox("Translation") self.translationCheckBox.setChecked(True) self.layout.addWidget(self.translationCheckBox) self.scalingCheckBox = qt.QCheckBox("Scaling") self.scalingCheckBox.setChecked(True) self.layout.addWidget(self.scalingCheckBox) self.writefileCheckBox = qt.QCheckBox("Write distances to csv file") self.writefileCheckBox.setChecked(True) self.layout.addWidget(self.writefileCheckBox) # Load button self.applyButton = qt.QPushButton("Find markers and transform") self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes." self.applyButton.enabled = True self.layout.addWidget(self.applyButton) # Connect button to logic self.applyButton.connect('clicked(bool)', self.onApplyButton) self.layout.addStretch(1) def onApplyButton(self): logic = MyTransformModuleLogic() selectedMethod = self.rotationMethodComboBox.currentText # izberi metodo izračuna rotacije # Preberi stanje checkboxov applyRotation = self.rotationCheckBox.isChecked() applyTranslation = self.translationCheckBox.isChecked() applyScaling = self.scalingCheckBox.isChecked() writefilecheck = self.writefileCheckBox.isChecked() # Pokliči logiko z izbranimi nastavitvami logic.run(selectedMethod, applyRotation, applyTranslation, applyScaling, writefilecheck) class MyTransformModuleLogic(ScriptedLoadableModuleLogic): """ Core logic of the module. """ def run(self, selectedMethod, applyRotation, applyTranslation, applyScaling, writefilecheck): print("Calculating...") def group_points(points, threshold): # Function to group points that are close to each other grouped_points = [] while points: point = points.pop() # Take one point from the list group = [point] # Start a new group # Find all points close to this one distances = cdist([point], points) # Calculate distances from this point to others close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold] # Add the close points to the group group.extend([points[i] for i in close_points]) # Remove the grouped points from the list points = [point for i, point in enumerate(points) if i not in close_points] # Add the group to the result grouped_points.append(group) return grouped_points def region_growing(image_data, seed, intensity_threshold, max_distance): dimensions = image_data.GetDimensions() visited = set() region = [] queue = deque([seed]) while queue: x, y, z = queue.popleft() if (x, y, z) in visited: continue visited.add((x, y, z)) voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0) if voxel_value >= intensity_threshold: region.append((x, y, z)) # Add neighbors within bounds for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]: nx, ny, nz = x + dx, y + dy, z + dz if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]: if (nx, ny, nz) not in visited: queue.append((nx, ny, nz)) return region def compute_optimal_scaling_per_axis(moving_points, fixed_points): """Computes optimal scaling factors for each axis (X, Y, Z) to align moving points (CBCT) to fixed points (CT). Args: moving_points (list of lists): List of (x, y, z) moving points (CBCT). fixed_points (list of lists): List of (x, y, z) fixed points (CT). Returns: tuple: Scaling factors (sx, sy, sz). """ moving_points_np = np.array(moving_points) fixed_points_np = np.array(fixed_points) # Compute centroids centroid_moving = np.mean(moving_points_np, axis=0) centroid_fixed = np.mean(fixed_points_np, axis=0) # Compute absolute distances of each point from its centroid along each axis distances_moving = np.abs(moving_points_np - centroid_moving) distances_fixed = np.abs(fixed_points_np - centroid_fixed) # Compute scaling factors as the ratio of mean absolute distances per axis scale_factors = np.mean(distances_fixed, axis=0) / np.mean(distances_moving, axis=0) return tuple(scale_factors) def compute_scaling(cbct_points, scaling_factors): """Applies non-uniform scaling to CBCT points. Args: cbct_points (list of lists): List of (x, y, z) points. scaling_factors (tuple): Scaling factors (sx, sy, sz) for each axis. Returns: np.ndarray: Scaled CBCT points. """ sx, sy, sz = scaling_factors # Extract scaling factors scaling_matrix = np.diag([sx, sy, sz]) # Create diagonal scaling matrix cbct_points_np = np.array(cbct_points) # Convert to numpy array scaled_points = cbct_points_np @ scaling_matrix.T # Apply scaling return scaled_points.tolist() # Convert back to list def compute_Kabsch_rotation(moving_points, fixed_points): """ Computes the optimal rotation matrix to align moving_points to fixed_points. Parameters: moving_points (list or ndarray): List of points to be rotated CBCT fixed_points (list or ndarray): List of reference points CT Returns: ndarray: Optimal rotation matrix. """ assert len(moving_points) == len(fixed_points), "Point lists must be the same length." # Convert to numpy arrays moving = np.array(moving_points) fixed = np.array(fixed_points) # Compute centroids centroid_moving = np.mean(moving, axis=0) centroid_fixed = np.mean(fixed, axis=0) # Center the points moving_centered = moving - centroid_moving fixed_centered = fixed - centroid_fixed # Compute covariance matrix H = np.dot(moving_centered.T, fixed_centered) # SVD decomposition U, _, Vt = np.linalg.svd(H) Rotate_optimal = np.dot(Vt.T, U.T) # Correct improper rotation (reflection) if np.linalg.det(Rotate_optimal) < 0: Vt[-1, :] *= -1 Rotate_optimal = np.dot(Vt.T, U.T) return Rotate_optimal def compute_Horn_rotation(moving_points, fixed_points): """ Computes the optimal rotation matrix using quaternions. Parameters: moving_points (list or ndarray): List of points to be rotated. fixed_points (list or ndarray): List of reference points. Returns: ndarray: Optimal rotation matrix. """ assert len(moving_points) == len(fixed_points), "Point lists must be the same length." moving = np.array(moving_points) fixed = np.array(fixed_points) # Compute centroids centroid_moving = np.mean(moving, axis=0) centroid_fixed = np.mean(fixed, axis=0) # Center the points moving_centered = moving - centroid_moving fixed_centered = fixed - centroid_fixed # Construct the cross-dispersion matrix M = np.dot(moving_centered.T, fixed_centered) # Construct the N matrix for quaternion solution A = M - M.T delta = np.array([A[1, 2], A[2, 0], A[0, 1]]) trace = np.trace(M) N = np.zeros((4, 4)) N[0, 0] = trace N[1:, 0] = delta N[0, 1:] = delta N[1:, 1:] = M + M.T - np.eye(3) * trace # Compute the eigenvector corresponding to the maximum eigenvalue eigvals, eigvecs = np.linalg.eigh(N) q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion # Convert quaternion to rotation matrix w, x, y, z = q_optimal R = np.array([ [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)], [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)], [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)] ]) return R def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5): """ Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points. Parameters: moving_points (list or ndarray): List of points to be aligned. fixed_points (list or ndarray): List of reference points. max_iterations (int): Maximum number of iterations. tolerance (float): Convergence tolerance. Returns: ndarray: Transformed moving points. ndarray: Optimal rotation matrix. ndarray: Optimal translation vector. """ # Convert to numpy arrays moving = np.array(moving_points) fixed = np.array(fixed_points) # Initialize transformation R = np.eye(3) # Identity matrix for rotation t = np.zeros(3) # Zero vector for translation prev_error = np.inf # Initialize previous error to a large value for iteration in range(max_iterations): # Step 1: Find the nearest neighbors (correspondences) distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2) nearest_indices = np.argmin(distances, axis=1) nearest_points = fixed[nearest_indices] # Step 2: Compute the optimal rotation and translation R_new = compute_Kabsch_rotation(moving, nearest_points) centroid_moving = np.mean(moving, axis=0) centroid_fixed = np.mean(nearest_points, axis=0) t_new = centroid_fixed - np.dot(R_new, centroid_moving) # Step 3: Apply the transformation moving = np.dot(moving, R_new.T) + t_new # Update the cumulative transformation R = np.dot(R_new, R) t = np.dot(R_new, t) + t_new # Step 4: Check for convergence mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1)) if np.abs(prev_error - mean_error) < tolerance: print(f"ICP converged after {iteration + 1} iterations.") break prev_error = mean_error else: print(f"ICP reached maximum iterations ({max_iterations}).") return moving, R, t def compute_translation(moving_points, fixed_points, rotation_matrix): """ Computes the translation vector to align moving_points to fixed_points given a rotation matrix. Parameters: moving_points (list or ndarray): List of points to be translated. fixed_points (list or ndarray): List of reference points. rotation_matrix (ndarray): Rotation matrix. Returns: ndarray: Translation vector. """ # Convert to numpy arrays moving = np.array(moving_points) fixed = np.array(fixed_points) # Compute centroids centroid_moving = np.mean(moving, axis=0) centroid_fixed = np.mean(fixed, axis=0) # Compute translation translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix) return translation def create_vtk_transform(rotation_matrix, translation_vector): """ Creates a vtkTransform from a rotation matrix and a translation vector. """ # Create a 4x4 transformation matrix transform_matrix = np.eye(4) # Start with an identity matrix transform_matrix[:3, :3] = rotation_matrix # Set rotation part transform_matrix[:3, 3] = translation_vector # Set translation part # Convert to vtkMatrix4x4 vtk_matrix = vtk.vtkMatrix4x4() for i in range(4): for j in range(4): vtk_matrix.SetElement(i, j, transform_matrix[i, j]) #print("Transform matrix:") #for i in range(4): # print(" ".join(f"{vtk_matrix.GetElement(i, j):.6f}" for j in range(4))) # Create vtkTransform and set the matrix transform = vtk.vtkTransform() transform.SetMatrix(vtk_matrix) return transform def detect_points_region_growing(volume_name, yesCbct, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=140, max_distance=9, centroid_merge_threshold=5): volume_node = slicer.util.getNode(volume_name) if not volume_node: raise RuntimeError(f"Volume {volume_name} not found.") image_data = volume_node.GetImageData() matrix = vtk.vtkMatrix4x4() volume_node.GetIJKToRASMatrix(matrix) dimensions = image_data.GetDimensions() #detected_regions = [] if yesCbct: #je cbct ali ct? valid_x_min, valid_x_max = 0, dimensions[0] - 1 valid_y_min, valid_y_max = 0, dimensions[1] - 1 valid_z_min, valid_z_max = 0, dimensions[2] - 1 else: valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1) valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1) valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1) visited = set() def grow_region(x, y, z): if (x, y, z) in visited: return None voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0) if voxel_value < intensity_threshold: return None region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance) if region: for point in region: visited.add(tuple(point)) return region return None regions = [] for z in range(valid_z_min, valid_z_max + 1): for y in range(valid_y_min, valid_y_max + 1): for x in range(valid_x_min, valid_x_max + 1): region = grow_region(x, y, z) if region: regions.append(region) # Collect centroids using intensity-weighted average centroids = [] for region in regions: points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region]) intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region]) if intensities.sum() > 0: weighted_centroid = np.average(points, axis=0, weights=intensities) max_intensity = intensities.max() centroids.append((np.round(weighted_centroid, 2), max_intensity)) unique_centroids = [] for centroid, intensity in centroids: if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids): unique_centroids.append((centroid, intensity)) markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}") for centroid, intensity in unique_centroids: markups_node.AddControlPoint(*centroid) markups_node.SetDisplayVisibility(False) #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}") return unique_centroids def find_table_top_z(ct_volume_name, writefilecheck, yesCbct): """ Najde višino zgornjega roba mize v CT/CBCT volumnu in doda markerje. :param ct_volume_name: Ime volumna v slicerju :param writefilecheck: Če je True, zapiše rezultat v CSV :param yesCbct: Če je True, uporabi CBCT thresholde :return: Višina zgornjega roba mize v mm """ # Pridobi volumen ct_volume_node = slicer.util.getNode(ct_volume_name) image_data = ct_volume_node.GetImageData() spacing = ct_volume_node.GetSpacing() dims = image_data.GetDimensions() #origin = ct_volume_node.GetOrigin() # Pretvori volumen v numpy array np_array = slicer.util.arrayFromVolume(ct_volume_node) # Izračunaj sredinske IJK koordinate mid_ijk = [dims[0] // 2, dims[1] // 2, dims[2] // 2] # Preveri, da so IJK indeksi v mejah volumna mid_ijk = [max(0, min(dims[i] - 1, mid_ijk[i])) for i in range(3)] # Pretvorba IJK → RAS ijkToRasMatrix = vtk.vtkMatrix4x4() ct_volume_node.GetIJKToRASMatrix(ijkToRasMatrix) #mid_ras = np.array(ijkToRasMatrix.MultiplyPoint([*mid_ijk, 1]))[:3] # Sredinski Z slice mid_z_voxel = mid_ijk[2] slice_data = np_array[mid_z_voxel, :, :] # (Y, X) # Sredinski stolpec mid_x_voxel = mid_ijk[0] - 15 # 15 pikslov levo od sredine da ne merimo pri hrbtenici column_values = slice_data[:, mid_x_voxel] # Y smer # Doda marker v RAS koordinatah #mid_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Sredina_{ct_volume_name}") #mid_node.AddControlPoint(mid_ras) # Določi threshold glede na CBCT ali CT threshold = -300 if yesCbct else -100 # če je cbct iščemo vrednost -300, sicer pri CT 0 # Poišči rob mize (drugi dvig) previous_value = -1000 edge_count = 0 table_top_y = None min_jump = 100 if yesCbct else 50 # Minimalni skok za CBCT in CT for y in range(len(column_values) - 1, -1, -1): # Od spodaj navzgor intensity = column_values[y] #if column_values[y] > threshold and previous_value <= threshold: if (intensity - previous_value) > min_jump and intensity > threshold: # Namesto primerjave s threshold if yesCbct: table_top_y = y + 1 #Da nismo že v trupu #print(f"Zgornji rob mize najden pri Y = {table_top_y}") # CBCT break if edge_count == 0 or (edge_count == 1 and previous_value < -200): # Check if intensity is back lower than -400 edge_count += 1 #print(f"Zaznan rob mize pri X, Y, Z = {mid_x_voxel},{y}, {mid_z_voxel}") if edge_count == 2: # Drugi dvig = zgornji rob mize table_top_y = y + 1 #print(f"Zgornji rob mize najden pri Y = {table_top_y}") break previous_value = column_values[y] if table_top_y is None: print("❌ Zgornji rob mize ni bil najden!") return None # Pretvorba Y IJK → RAS table_ijk = [mid_x_voxel, table_top_y, mid_z_voxel] table_ras = np.array(ijkToRasMatrix.MultiplyPoint([*table_ijk, 1]))[:3] # Doda marker za višino mize table_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"VišinaMize_{ct_volume_name}") table_node.AddControlPoint(table_ras) table_node.SetDisplayVisibility(False) # Izračun višine v mm image_center_y = dims[1] // 2 pixel_offset = table_top_y - image_center_y mm_offset = pixel_offset * spacing[1] #print(f"📏 Miza je {abs(mm_offset):.2f} mm {'nižja' if mm_offset > 0 else 'višja'} od središča.") #print(f"📏 Miza je {abs(pixel_offset)} pixel {'nižja' if pixel_offset > 0 else 'višja'} od središča.") # Shrani v CSV if writefilecheck: file_path = os.path.join(os.path.dirname(__file__), "heightdata.csv") with open(file_path, mode='a', newline='') as file: writer = csv.writer(file) modality = "CBCT " if yesCbct else "CT " writer.writerow([modality, ct_volume_name, f" Upper part of table detected at Z = {mm_offset:.2f} mm, {pixel_offset} pixels"]) return mm_offset, pixel_offset # Globalni seznami za končno statistiko prostate_size_est = [] ctcbct_distance = [] # Pridobimo SubjectHierarchyNode shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene) studyItems = vtk.vtkIdList() shNode.GetItemChildren(shNode.GetSceneItemID(), studyItems) for i in range(studyItems.GetNumberOfIds()): studyItem = studyItems.GetId(i) # **LOKALNI** seznami, resetirajo se pri vsakem study-ju cbct_list = [] ct_list = [] volume_points_dict = {} CT_offset = 0 # Get child items of the study item volumeItems = vtk.vtkIdList() shNode.GetItemChildren(studyItem, volumeItems) # Iteracija čez vse volumne v posameznem studyju for j in range(volumeItems.GetNumberOfIds()): intermediateItem = volumeItems.GetId(j) finalVolumeItems = vtk.vtkIdList() shNode.GetItemChildren(intermediateItem, finalVolumeItems) # Išči globlje! for k in range(finalVolumeItems.GetNumberOfIds()): volumeItem = finalVolumeItems.GetId(k) volumeNode = shNode.GetItemDataNode(volumeItem) dicomUIDs = volumeNode.GetAttribute("DICOM.instanceUIDs") if not dicomUIDs: print("❌ This is an NRRD volume!") continue # Preskoči, če ni DICOM volume volumeName = volumeNode.GetName() imageItem = shNode.GetItemByDataNode(volumeNode) modality = shNode.GetItemAttribute(imageItem, "DICOM.Modality") #deluje! #dimensions = volumeNode.GetImageData().GetDimensions() #spacing = volumeNode.GetSpacing() #print(f"Volume {volumeNode.GetName()} - Dimenzije: {dimensions}, Spacing: {spacing}") if modality != "CT": print("Not a CT") continue # Preskoči, če ni CT # Preveri, če volume obstaja v sceni if not slicer.mrmlScene.IsNodePresent(volumeNode): print(f"Volume {volumeName} not present in the scene.") continue # Preverimo proizvajalca (DICOM metapodatki) manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer') #manufacturer = volumeNode.GetAttribute("DICOM.Manufacturer") #manufacturer = slicer.dicomDatabase.fileValue(uid, "0008,0070") #print(manufacturer) # Določimo, ali gre za CBCT ali CT if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower(): cbct_list.append(volumeName) scan_type = "CBCT" yesCbct = True else: # Siemens ali Philips ct_list.append(volumeName) scan_type = "CT" yesCbct = False if volumeNode and volumeNode.IsA("vtkMRMLScalarVolumeNode"): print(f"✔️ {scan_type} {volumeNode.GetName()} (ID: {volumeItem})") if not volumeNode or not volumeNode.IsA("vtkMRMLScalarVolumeNode"): print("Can't find volumeNode") #continue # Preskoči, če ni veljaven volume mm_offset, pixel_offset = find_table_top_z(volumeName, writefilecheck, yesCbct) if scan_type == "CT": CT_offset = pixel_offset #Določi koliko je višina CT slike od središča else: # Poravnava CBCT z višino CT CBCT_offset = pixel_offset alignment_offset = CT_offset - CBCT_offset print(f"Poravnavam CBCT z CT. Offset: {alignment_offset}") # Uporabi alignment_offset za premik CBCT transform = vtk.vtkTransform() transform.Translate(0, alignment_offset, 0) # Premik samo po y-osi (višina) #transformacija volumna oziroma poravnava po višini transformNode = slicer.vtkMRMLTransformNode() slicer.mrmlScene.AddNode(transformNode) transformNode.SetAndObserveTransformToParent(transform) volumeNode.SetAndObserveTransformNodeID(transformNode.GetID()) # Prilepi transformacijo na CBCT slicer.mrmlScene.RemoveNode(transformNode) # Odstrani transformacijo iz scene # Detekcija točk v volumnu grouped_points = detect_points_region_growing(volumeName, yesCbct, intensity_threshold=3000) #print(f"Populating volume_points_dict with key ('{scan_type}', '{volumeName}')") volume_points_dict[(scan_type, volumeName)] = grouped_points #print(volume_points_dict) # Check if the key is correctly added # Če imamo oba tipa volumna (CBCT in CT) **znotraj istega studyja** if cbct_list and ct_list: ct_volume_name = ct_list[0] # Uporabi prvi CT kot referenco print(f"\nProcessing CT: {ct_volume_name}") #yesCbct = False ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]] if len(ct_points) < 3: print(f"CT volume {ct_volume_name} doesn't have enough points for registration.") else: for cbct_volume_name in cbct_list: print(f"\nProcessing CBCT Volume: {cbct_volume_name}") #yesCbct = True cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]] #find_table_top_z(cbct_volume_name, writefilecheck, yesCbct) if len(cbct_points) < 3: print(f"CBCT Volume '{cbct_volume_name}' doesn't have enough points for registration.") continue # Shranjevanje razdalj distances_ct_cbct = [] distances_internal = {"A-B": [], "B-C": [], "C-A": []} cbct_points_array = np.array(cbct_points) # Pretvorba v numpy array ct_volume_node = slicer.util.getNode(ct_volume_name) cbct_volume_node = slicer.util.getNode(cbct_volume_name) #ct_spacing = ct_volume_node.GetSpacing() # (x_spacing, y_spacing, z_spacing) #cbct_spacing = cbct_volume_node.GetSpacing() # (x_spacing, y_spacing, z_spacing) #ct_scale_factor = np.array(ct_spacing) # Spacing za CT (x, y, z) #cbct_scale_factor = np.array(cbct_spacing) # Spacing za CBCT (x, y, z) #print(ct_scale_factor, cbct_scale_factor) # Sortiramo točke po Z-koordinati (ali X/Y, če raje uporabljaš drugo os) cbct_points_sorted = cbct_points_array[np.argsort(cbct_points_array[:, 2])] # Razdalje med CT in CBCT (SORTIRANE točke!) d_ct_cbct = np.linalg.norm(cbct_points_sorted - ct_points, axis=1) distances_ct_cbct.append(d_ct_cbct) # Razdalje med točkami znotraj SORTIRANIH cbct_points d_ab = np.linalg.norm(cbct_points_sorted[0] - cbct_points_sorted[1]) d_bc = np.linalg.norm(cbct_points_sorted[1] - cbct_points_sorted[2]) d_ca = np.linalg.norm(cbct_points_sorted[2] - cbct_points_sorted[0]) # Sortiramo razdalje po velikosti, da so vedno v enakem vrstnem redu sorted_distances = sorted([d_ab, d_bc, d_ca]) distances_internal["A-B"].append(sorted_distances[0]) distances_internal["B-C"].append(sorted_distances[1]) distances_internal["C-A"].append(sorted_distances[2]) # Dodamo ime študije za v statistiko studyName = shNode.GetItemName(studyItem) # **Shrani razdalje v globalne sezname** prostate_size_est.append({"Study": studyName, "Distances": sorted_distances}) ctcbct_distance.append({"Study": studyName, "Distances": list(distances_ct_cbct[-1])}) # Pretvorimo v seznam # Izberi metodo glede na uporabnikov izbor chosen_rotation_matrix = np.eye(3) chosen_translation_vector = np.zeros(3) if applyScaling: scaling_factors = compute_optimal_scaling_per_axis(cbct_points, ct_points) print("Scaling factors: ", scaling_factors) cbct_points = compute_scaling(cbct_points, scaling_factors) if applyRotation: if selectedMethod == "Kabsch": chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points) elif selectedMethod == "Horn": chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points) elif selectedMethod == "Iterative Closest Point (Kabsch)": _, chosen_rotation_matrix, _ = icp_algorithm(cbct_points, ct_points) print("Rotation Matrix:\n", chosen_rotation_matrix) if applyTranslation: chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix) print("Translation Vector:\n", chosen_translation_vector) # Ustvari vtkTransformNode in ga poveži z CBCT volumenom imeTransformNoda = cbct_volume_name + " Transform" transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda) # Kreiraj transformacijo in jo uporabi vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector) transform_node.SetAndObserveTransformToParent(vtk_transform) # Pridobi CBCT volumen in aplikacijo transformacije cbct_volume_node = slicer.util.getNode(cbct_volume_name) cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID()) # Uporabi transformacijo na volumnu (fizična aplikacija) slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node) #aplicira transformacijo na volumnu slicer.mrmlScene.RemoveNode(transform_node) # Odstrani transformacijo iz scene print("Transform successful on ", cbct_volume_name) else: print(f"Study {studyItem} doesn't have any appropriate CT or CBCT volumes.") # Izpis globalne statistike if(writefilecheck): print("Distances between CT & CBCT markers: ", ctcbct_distance) print("Distances between pairs of markers for each volume: ", prostate_size_est) # Define the file path for the CSV file file_path = os.path.join(os.path.dirname(__file__), "study_data.csv") # Write lists to the CSV file with open(file_path, mode='w', newline='') as file: #w za write, a za append writer = csv.writer(file) # Write headers writer.writerow(["Prostate Size", "CT-CBCT Distance"]) # Write data rows for i in range(len(prostate_size_est)): writer.writerow([prostate_size_est[i], ctcbct_distance[i]]) print("File written at ", file_path)