SeekTransformModule.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. import os
  2. import numpy as np
  3. import scipy
  4. from scipy.spatial.distance import cdist
  5. from scipy.spatial.transform import Rotation as R
  6. import slicer
  7. from DICOMLib import DICOMUtils
  8. from collections import deque
  9. import vtk
  10. from slicer.ScriptedLoadableModule import *
  11. import qt
  12. #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read())
  13. class SeekTransformModule(ScriptedLoadableModule):
  14. """
  15. Module description shown in the module panel.
  16. """
  17. def __init__(self, parent):
  18. ScriptedLoadableModule.__init__(self, parent)
  19. self.parent.title = "Seek Transform module"
  20. self.parent.categories = ["Image Processing"]
  21. self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"]
  22. self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes."
  23. self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen"
  24. class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
  25. """
  26. GUI of the module.
  27. """
  28. def setup(self):
  29. ScriptedLoadableModuleWidget.setup(self)
  30. # Dropdown menu za izbiro metode
  31. self.rotationMethodComboBox = qt.QComboBox()
  32. self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"])
  33. self.layout.addWidget(self.rotationMethodComboBox)
  34. # Load button
  35. self.applyButton = qt.QPushButton("Find markers and transform")
  36. self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes."
  37. self.applyButton.enabled = True
  38. self.layout.addWidget(self.applyButton)
  39. # Connect button to logic
  40. self.applyButton.connect('clicked(bool)', self.onApplyButton)
  41. self.layout.addStretch(1)
  42. def onApplyButton(self):
  43. logic = MyTransformModuleLogic()
  44. selectedMethod = self.rotationMethodComboBox.currentText #izberi metodo izračuna rotacije
  45. logic.run(selectedMethod)
  46. class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
  47. """
  48. Core logic of the module.
  49. """
  50. def run(self, selectedMethod):
  51. print("Calculating...")
  52. def group_points(points, threshold):
  53. # Function to group points that are close to each other
  54. grouped_points = []
  55. while points:
  56. point = points.pop() # Take one point from the list
  57. group = [point] # Start a new group
  58. # Find all points close to this one
  59. distances = cdist([point], points) # Calculate distances from this point to others
  60. close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
  61. # Add the close points to the group
  62. group.extend([points[i] for i in close_points])
  63. # Remove the grouped points from the list
  64. points = [point for i, point in enumerate(points) if i not in close_points]
  65. # Add the group to the result
  66. grouped_points.append(group)
  67. return grouped_points
  68. def region_growing(image_data, seed, intensity_threshold, max_distance):
  69. dimensions = image_data.GetDimensions()
  70. visited = set()
  71. region = []
  72. queue = deque([seed])
  73. while queue:
  74. x, y, z = queue.popleft()
  75. if (x, y, z) in visited:
  76. continue
  77. visited.add((x, y, z))
  78. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  79. if voxel_value >= intensity_threshold:
  80. region.append((x, y, z))
  81. # Add neighbors within bounds
  82. for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
  83. nx, ny, nz = x + dx, y + dy, z + dz
  84. if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
  85. if (nx, ny, nz) not in visited:
  86. queue.append((nx, ny, nz))
  87. return region
  88. def detect_points_region_growing(volume_name, yesCbct, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=140, max_distance=9, centroid_merge_threshold=5):
  89. volume_node = slicer.util.getNode(volume_name)
  90. if not volume_node:
  91. raise RuntimeError(f"Volume {volume_name} not found.")
  92. image_data = volume_node.GetImageData()
  93. matrix = vtk.vtkMatrix4x4()
  94. volume_node.GetIJKToRASMatrix(matrix)
  95. dimensions = image_data.GetDimensions()
  96. #detected_regions = []
  97. if yesCbct: #je cbct ali ct?
  98. valid_x_min, valid_x_max = 0, dimensions[0] - 1
  99. valid_y_min, valid_y_max = 0, dimensions[1] - 1
  100. valid_z_min, valid_z_max = 0, dimensions[2] - 1
  101. else:
  102. valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
  103. valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
  104. valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
  105. visited = set()
  106. def grow_region(x, y, z):
  107. if (x, y, z) in visited:
  108. return None
  109. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  110. if voxel_value < intensity_threshold:
  111. return None
  112. region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
  113. if region:
  114. for point in region:
  115. visited.add(tuple(point))
  116. return region
  117. return None
  118. regions = []
  119. for z in range(valid_z_min, valid_z_max + 1):
  120. for y in range(valid_y_min, valid_y_max + 1):
  121. for x in range(valid_x_min, valid_x_max + 1):
  122. region = grow_region(x, y, z)
  123. if region:
  124. regions.append(region)
  125. # Collect centroids using intensity-weighted average
  126. centroids = []
  127. for region in regions:
  128. points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
  129. intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
  130. if intensities.sum() > 0:
  131. weighted_centroid = np.average(points, axis=0, weights=intensities)
  132. max_intensity = intensities.max()
  133. centroids.append((np.round(weighted_centroid, 2), max_intensity))
  134. unique_centroids = []
  135. for centroid, intensity in centroids:
  136. if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
  137. unique_centroids.append((centroid, intensity))
  138. markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
  139. for centroid, intensity in unique_centroids:
  140. markups_node.AddControlPoint(*centroid)
  141. #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
  142. return unique_centroids
  143. def compute_Kabsch_rotation(moving_points, fixed_points):
  144. """
  145. Computes the optimal rotation matrix to align moving_points to fixed_points.
  146. Parameters:
  147. moving_points (list or ndarray): List of points to be rotated CBCT
  148. fixed_points (list or ndarray): List of reference points CT
  149. Returns:
  150. ndarray: Optimal rotation matrix.
  151. """
  152. assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
  153. # Convert to numpy arrays
  154. moving = np.array(moving_points)
  155. fixed = np.array(fixed_points)
  156. # Compute centroids
  157. centroid_moving = np.mean(moving, axis=0)
  158. centroid_fixed = np.mean(fixed, axis=0)
  159. # Center the points
  160. moving_centered = moving - centroid_moving
  161. fixed_centered = fixed - centroid_fixed
  162. # Compute covariance matrix
  163. H = np.dot(moving_centered.T, fixed_centered)
  164. # SVD decomposition
  165. U, _, Vt = np.linalg.svd(H)
  166. Rotate_optimal = np.dot(Vt.T, U.T)
  167. # Correct improper rotation (reflection)
  168. if np.linalg.det(Rotate_optimal) < 0:
  169. Vt[-1, :] *= -1
  170. Rotate_optimal = np.dot(Vt.T, U.T)
  171. return Rotate_optimal
  172. def compute_Horn_rotation(moving_points, fixed_points):
  173. """
  174. Computes the optimal rotation matrix using quaternions.
  175. Parameters:
  176. moving_points (list or ndarray): List of points to be rotated.
  177. fixed_points (list or ndarray): List of reference points.
  178. Returns:
  179. ndarray: Optimal rotation matrix.
  180. """
  181. assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
  182. moving = np.array(moving_points)
  183. fixed = np.array(fixed_points)
  184. # Compute centroids
  185. centroid_moving = np.mean(moving, axis=0)
  186. centroid_fixed = np.mean(fixed, axis=0)
  187. # Center the points
  188. moving_centered = moving - centroid_moving
  189. fixed_centered = fixed - centroid_fixed
  190. # Construct the cross-dispersion matrix
  191. M = np.dot(moving_centered.T, fixed_centered)
  192. # Construct the N matrix for quaternion solution
  193. A = M - M.T
  194. delta = np.array([A[1, 2], A[2, 0], A[0, 1]])
  195. trace = np.trace(M)
  196. N = np.zeros((4, 4))
  197. N[0, 0] = trace
  198. N[1:, 0] = delta
  199. N[0, 1:] = delta
  200. N[1:, 1:] = M + M.T - np.eye(3) * trace
  201. # Compute the eigenvector corresponding to the maximum eigenvalue
  202. eigvals, eigvecs = np.linalg.eigh(N)
  203. q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion
  204. # Convert quaternion to rotation matrix
  205. w, x, y, z = q_optimal
  206. R = np.array([
  207. [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)],
  208. [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)],
  209. [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)]
  210. ])
  211. return R
  212. def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
  213. """
  214. Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
  215. Parameters:
  216. moving_points (list or ndarray): List of points to be aligned.
  217. fixed_points (list or ndarray): List of reference points.
  218. max_iterations (int): Maximum number of iterations.
  219. tolerance (float): Convergence tolerance.
  220. Returns:
  221. ndarray: Transformed moving points.
  222. ndarray: Optimal rotation matrix.
  223. ndarray: Optimal translation vector.
  224. """
  225. # Convert to numpy arrays
  226. moving = np.array(moving_points)
  227. fixed = np.array(fixed_points)
  228. # Initialize transformation
  229. R = np.eye(3) # Identity matrix for rotation
  230. t = np.zeros(3) # Zero vector for translation
  231. prev_error = np.inf # Initialize previous error to a large value
  232. for iteration in range(max_iterations):
  233. # Step 1: Find the nearest neighbors (correspondences)
  234. distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
  235. nearest_indices = np.argmin(distances, axis=1)
  236. nearest_points = fixed[nearest_indices]
  237. # Step 2: Compute the optimal rotation and translation
  238. R_new = compute_Kabsch_rotation(moving, nearest_points)
  239. centroid_moving = np.mean(moving, axis=0)
  240. centroid_fixed = np.mean(nearest_points, axis=0)
  241. t_new = centroid_fixed - np.dot(R_new, centroid_moving)
  242. # Step 3: Apply the transformation
  243. moving = np.dot(moving, R_new.T) + t_new
  244. # Update the cumulative transformation
  245. R = np.dot(R_new, R)
  246. t = np.dot(R_new, t) + t_new
  247. # Step 4: Check for convergence
  248. mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
  249. if np.abs(prev_error - mean_error) < tolerance:
  250. print(f"ICP converged after {iteration + 1} iterations.")
  251. break
  252. prev_error = mean_error
  253. else:
  254. print(f"ICP reached maximum iterations ({max_iterations}).")
  255. return moving, R, t
  256. def compute_translation(moving_points, fixed_points, rotation_matrix):
  257. """
  258. Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
  259. Parameters:
  260. moving_points (list or ndarray): List of points to be translated.
  261. fixed_points (list or ndarray): List of reference points.
  262. rotation_matrix (ndarray): Rotation matrix.
  263. Returns:
  264. ndarray: Translation vector.
  265. """
  266. # Convert to numpy arrays
  267. moving = np.array(moving_points)
  268. fixed = np.array(fixed_points)
  269. # Compute centroids
  270. centroid_moving = np.mean(moving, axis=0)
  271. centroid_fixed = np.mean(fixed, axis=0)
  272. # Compute translation
  273. translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
  274. return translation
  275. def create_vtk_transform(rotation_matrix, translation_vector):
  276. """
  277. Creates a vtkTransform from a rotation matrix and a translation vector.
  278. """
  279. # Create a 4x4 transformation matrix
  280. transform_matrix = np.eye(4) # Start with an identity matrix
  281. transform_matrix[:3, :3] = rotation_matrix # Set rotation part
  282. transform_matrix[:3, 3] = translation_vector # Set translation part
  283. # Convert to vtkMatrix4x4
  284. vtk_matrix = vtk.vtkMatrix4x4()
  285. for i in range(4):
  286. for j in range(4):
  287. vtk_matrix.SetElement(i, j, transform_matrix[i, j])
  288. #print("Transform matrix:")
  289. #for i in range(4):
  290. # print(" ".join(f"{vtk_matrix.GetElement(i, j):.6f}" for j in range(4)))
  291. # Create vtkTransform and set the matrix
  292. transform = vtk.vtkTransform()
  293. transform.SetMatrix(vtk_matrix)
  294. return transform
  295. # Initialize lists and dictionary
  296. cbct_list = []
  297. ct_list = []
  298. volume_points_dict = {}
  299. # Process loaded volumes
  300. for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
  301. volumeName = volumeNode.GetName()
  302. #print(volumeName)
  303. shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
  304. imageItem = shNode.GetItemByDataNode(volumeNode)
  305. # Pridobi vse atribute za ta element
  306. #attributeNames = shNode.GetItemAttributeNames(imageItem)
  307. #modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
  308. #manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
  309. #print(modality)
  310. # Check if the volume is loaded into the scene
  311. if not slicer.mrmlScene.IsNodePresent(volumeNode):
  312. print(f"Volume {volumeName} not present in the scene.")
  313. continue
  314. manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
  315. #print(manufacturer.lower())
  316. # Determine scan type
  317. if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower():
  318. cbct_list.append(volumeName)
  319. scan_type = "CBCT"
  320. yesCbct = True
  321. else: #Siemens or phillips imamo CTje
  322. ct_list.append(volumeName)
  323. scan_type = "CT"
  324. yesCbct = False
  325. # Detect points using region growing
  326. grouped_points = detect_points_region_growing(volumeName, yesCbct, intensity_threshold=3000)
  327. volume_points_dict[(scan_type, volumeName)] = grouped_points
  328. # Print the results
  329. # print(f"\nCBCT Volumes: {cbct_list}")
  330. # print(f"CT Volumes: {ct_list}")
  331. # print("\nDetected Points by Volume:")
  332. # for (scan_type, vol_name), points in volume_points_dict.items():
  333. # print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.")
  334. if cbct_list and ct_list:
  335. # Izberi prvi CT volumen kot referenco
  336. ct_volume_name = ct_list[0]
  337. ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]]
  338. if len(ct_points) < 3:
  339. print("CT volumen nima dovolj točk za registracijo.")
  340. else:
  341. #print("CT points: ", np.array(ct_points))
  342. for cbct_volume_name in cbct_list:
  343. # Izvleci točke za trenutni CBCT volumen
  344. cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]]
  345. print(f"\nProcessing CBCT Volume: {cbct_volume_name}")
  346. if len(cbct_points) < 3:
  347. print(f"CBCT Volume '{cbct_volume_name}' nima dovolj točk za registracijo.")
  348. continue
  349. #print("CBCT points: ", np.array(cbct_points))
  350. # Display the results for the current CBCT volume
  351. # print("\nSVD Method:")
  352. # print("Rotation Matrix:\n", svd_rotation_matrix)
  353. # print("Translation Vector:\n", svd_translation_vector)
  354. # print("\nHorn Method:")
  355. # print("Rotation Matrix:\n", horn_rotation_matrix)
  356. # print("Translation Vector:\n", horn_translation_vector)
  357. # print("\nQuaternion Method:")
  358. # print("Rotation Matrix:\n", quaternion_rotation_matrix)
  359. # print("Translation Vector:\n", quaternion_translation_vector)
  360. # Izberi metodo glede na uporabnikov izbor
  361. if selectedMethod == "Kabsch":
  362. chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
  363. chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  364. print("\nKabsch Method:")
  365. print("Rotation Matrix:\n", chosen_rotation_matrix)
  366. print("Translation Vector:\n", chosen_translation_vector)
  367. elif selectedMethod == "Horn":
  368. chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
  369. chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  370. print("\nHorn Method:")
  371. print("Rotation Matrix:\n", chosen_rotation_matrix)
  372. print("Translation Vector:\n", chosen_translation_vector)
  373. elif selectedMethod == "Iterative Closest Point (Kabsch)":
  374. new_points, chosen_rotation_matrix, chosen_translation_vector = icp_algorithm(cbct_points, ct_points)
  375. #chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  376. print("\Iterative Closest Point Method:")
  377. print("Rotation Matrix:\n", chosen_rotation_matrix)
  378. print("Translation Vector:\n", chosen_translation_vector)
  379. imeTransformNoda = cbct_volume_name + " Transform"
  380. # Ustvari vtkTransformNode in ga poveži z CBCT volumenom
  381. transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
  382. # Kliči funkcijo, ki uporabi matriki
  383. vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector)
  384. # Dodaj transform v node
  385. transform_node.SetAndObserveTransformToParent(vtk_transform)
  386. # Pridobi CBCT volumen in aplikacijo transformacije
  387. cbct_volume_node = slicer.util.getNode(cbct_volume_name)
  388. cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID()) # Pripni transform node na volumen
  389. # Uporabi transformacijo na volumnu (fizična aplikacija)
  390. slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node) # Uporabi transform na volumen
  391. print("Transform uspešen na", cbct_volume_name)
  392. #transformed_cbct_image = create_vtk_transform(cbct_image_sitk, chosen_rotation_matrix, chosen_translation_vector)
  393. else:
  394. print("CBCT ali CT volumen ni bil najden.")