123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498 |
- import os
- import numpy as np
- import scipy
- from scipy.spatial.distance import cdist
- from scipy.spatial.transform import Rotation as R
- import slicer
- from DICOMLib import DICOMUtils
- from collections import deque
- import vtk
- from slicer.ScriptedLoadableModule import *
- import qt
- #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read())
- class SeekTransformModule(ScriptedLoadableModule):
- """
- Module description shown in the module panel.
- """
- def __init__(self, parent):
- ScriptedLoadableModule.__init__(self, parent)
- self.parent.title = "Seek Transform module"
- self.parent.categories = ["Image Processing"]
- self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"]
- self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes."
- self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen"
- class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
- """
- GUI of the module.
- """
- def setup(self):
- ScriptedLoadableModuleWidget.setup(self)
- # Dropdown menu za izbiro metode
- self.rotationMethodComboBox = qt.QComboBox()
- self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"])
- self.layout.addWidget(self.rotationMethodComboBox)
-
- # Load button
- self.applyButton = qt.QPushButton("Find markers and transform")
- self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes."
- self.applyButton.enabled = True
- self.layout.addWidget(self.applyButton)
- # Connect button to logic
- self.applyButton.connect('clicked(bool)', self.onApplyButton)
- self.layout.addStretch(1)
- def onApplyButton(self):
- logic = MyTransformModuleLogic()
- selectedMethod = self.rotationMethodComboBox.currentText #izberi metodo izračuna rotacije
- logic.run(selectedMethod)
- class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
- """
- Core logic of the module.
- """
- def run(self, selectedMethod):
- print("Calculating...")
- def group_points(points, threshold):
- # Function to group points that are close to each other
- grouped_points = []
- while points:
- point = points.pop() # Take one point from the list
- group = [point] # Start a new group
-
- # Find all points close to this one
- distances = cdist([point], points) # Calculate distances from this point to others
- close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
-
- # Add the close points to the group
- group.extend([points[i] for i in close_points])
-
- # Remove the grouped points from the list
- points = [point for i, point in enumerate(points) if i not in close_points]
-
- # Add the group to the result
- grouped_points.append(group)
-
- return grouped_points
- def region_growing(image_data, seed, intensity_threshold, max_distance):
- dimensions = image_data.GetDimensions()
- visited = set()
- region = []
- queue = deque([seed])
- while queue:
- x, y, z = queue.popleft()
- if (x, y, z) in visited:
- continue
- visited.add((x, y, z))
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
-
- if voxel_value >= intensity_threshold:
- region.append((x, y, z))
- # Add neighbors within bounds
- for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
- nx, ny, nz = x + dx, y + dy, z + dz
- if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
- if (nx, ny, nz) not in visited:
- queue.append((nx, ny, nz))
- return region
- def detect_points_region_growing(volume_name, yesCbct, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=140, max_distance=9, centroid_merge_threshold=5):
- volume_node = slicer.util.getNode(volume_name)
- if not volume_node:
- raise RuntimeError(f"Volume {volume_name} not found.")
-
- image_data = volume_node.GetImageData()
- matrix = vtk.vtkMatrix4x4()
- volume_node.GetIJKToRASMatrix(matrix)
- dimensions = image_data.GetDimensions()
- #detected_regions = []
- if yesCbct: #je cbct ali ct?
- valid_x_min, valid_x_max = 0, dimensions[0] - 1
- valid_y_min, valid_y_max = 0, dimensions[1] - 1
- valid_z_min, valid_z_max = 0, dimensions[2] - 1
- else:
- valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
- valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
- valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
- visited = set()
- def grow_region(x, y, z):
- if (x, y, z) in visited:
- return None
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
- if voxel_value < intensity_threshold:
- return None
- region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
- if region:
- for point in region:
- visited.add(tuple(point))
- return region
- return None
- regions = []
- for z in range(valid_z_min, valid_z_max + 1):
- for y in range(valid_y_min, valid_y_max + 1):
- for x in range(valid_x_min, valid_x_max + 1):
- region = grow_region(x, y, z)
- if region:
- regions.append(region)
- # Collect centroids using intensity-weighted average
- centroids = []
- for region in regions:
- points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
- intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
-
- if intensities.sum() > 0:
- weighted_centroid = np.average(points, axis=0, weights=intensities)
- max_intensity = intensities.max()
- centroids.append((np.round(weighted_centroid, 2), max_intensity))
- unique_centroids = []
- for centroid, intensity in centroids:
- if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
- unique_centroids.append((centroid, intensity))
-
- markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
- for centroid, intensity in unique_centroids:
- markups_node.AddControlPoint(*centroid)
- #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
- return unique_centroids
- def compute_Kabsch_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be rotated CBCT
- fixed_points (list or ndarray): List of reference points CT
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
- # Compute covariance matrix
- H = np.dot(moving_centered.T, fixed_centered)
- # SVD decomposition
- U, _, Vt = np.linalg.svd(H)
- Rotate_optimal = np.dot(Vt.T, U.T)
- # Correct improper rotation (reflection)
- if np.linalg.det(Rotate_optimal) < 0:
- Vt[-1, :] *= -1
- Rotate_optimal = np.dot(Vt.T, U.T)
- return Rotate_optimal
- def compute_Horn_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix using quaternions.
- Parameters:
- moving_points (list or ndarray): List of points to be rotated.
- fixed_points (list or ndarray): List of reference points.
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
-
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
-
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
-
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
-
- # Construct the cross-dispersion matrix
- M = np.dot(moving_centered.T, fixed_centered)
-
- # Construct the N matrix for quaternion solution
- A = M - M.T
- delta = np.array([A[1, 2], A[2, 0], A[0, 1]])
- trace = np.trace(M)
-
- N = np.zeros((4, 4))
- N[0, 0] = trace
- N[1:, 0] = delta
- N[0, 1:] = delta
- N[1:, 1:] = M + M.T - np.eye(3) * trace
-
- # Compute the eigenvector corresponding to the maximum eigenvalue
- eigvals, eigvecs = np.linalg.eigh(N)
- q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion
-
- # Convert quaternion to rotation matrix
- w, x, y, z = q_optimal
- R = np.array([
- [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)],
- [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)],
- [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)]
- ])
-
- return R
- def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
- """
- Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be aligned.
- fixed_points (list or ndarray): List of reference points.
- max_iterations (int): Maximum number of iterations.
- tolerance (float): Convergence tolerance.
- Returns:
- ndarray: Transformed moving points.
- ndarray: Optimal rotation matrix.
- ndarray: Optimal translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Initialize transformation
- R = np.eye(3) # Identity matrix for rotation
- t = np.zeros(3) # Zero vector for translation
- prev_error = np.inf # Initialize previous error to a large value
- for iteration in range(max_iterations):
- # Step 1: Find the nearest neighbors (correspondences)
- distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
- nearest_indices = np.argmin(distances, axis=1)
- nearest_points = fixed[nearest_indices]
- # Step 2: Compute the optimal rotation and translation
- R_new = compute_Kabsch_rotation(moving, nearest_points)
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(nearest_points, axis=0)
- t_new = centroid_fixed - np.dot(R_new, centroid_moving)
- # Step 3: Apply the transformation
- moving = np.dot(moving, R_new.T) + t_new
- # Update the cumulative transformation
- R = np.dot(R_new, R)
- t = np.dot(R_new, t) + t_new
- # Step 4: Check for convergence
- mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
- if np.abs(prev_error - mean_error) < tolerance:
- print(f"ICP converged after {iteration + 1} iterations.")
- break
- prev_error = mean_error
- else:
- print(f"ICP reached maximum iterations ({max_iterations}).")
- return moving, R, t
- def compute_translation(moving_points, fixed_points, rotation_matrix):
- """
- Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
-
- Parameters:
- moving_points (list or ndarray): List of points to be translated.
- fixed_points (list or ndarray): List of reference points.
- rotation_matrix (ndarray): Rotation matrix.
- Returns:
- ndarray: Translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Compute translation
- translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
- return translation
- def create_vtk_transform(rotation_matrix, translation_vector):
- """
- Creates a vtkTransform from a rotation matrix and a translation vector.
- """
- # Create a 4x4 transformation matrix
- transform_matrix = np.eye(4) # Start with an identity matrix
- transform_matrix[:3, :3] = rotation_matrix # Set rotation part
- transform_matrix[:3, 3] = translation_vector # Set translation part
- # Convert to vtkMatrix4x4
- vtk_matrix = vtk.vtkMatrix4x4()
- for i in range(4):
- for j in range(4):
- vtk_matrix.SetElement(i, j, transform_matrix[i, j])
- #print("Transform matrix:")
- #for i in range(4):
- # print(" ".join(f"{vtk_matrix.GetElement(i, j):.6f}" for j in range(4)))
- # Create vtkTransform and set the matrix
- transform = vtk.vtkTransform()
- transform.SetMatrix(vtk_matrix)
- return transform
- # Initialize lists and dictionary
- cbct_list = []
- ct_list = []
- volume_points_dict = {}
- # Process loaded volumes
- for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
- volumeName = volumeNode.GetName()
- #print(volumeName)
- shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
- imageItem = shNode.GetItemByDataNode(volumeNode)
-
- # Pridobi vse atribute za ta element
- #attributeNames = shNode.GetItemAttributeNames(imageItem)
-
- #modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
- #manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
- #print(modality)
-
- # Check if the volume is loaded into the scene
- if not slicer.mrmlScene.IsNodePresent(volumeNode):
- print(f"Volume {volumeName} not present in the scene.")
- continue
-
- manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
- #print(manufacturer.lower())
- # Determine scan type
- if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower():
- cbct_list.append(volumeName)
- scan_type = "CBCT"
- yesCbct = True
- else: #Siemens or phillips imamo CTje
- ct_list.append(volumeName)
- scan_type = "CT"
- yesCbct = False
-
- # Detect points using region growing
- grouped_points = detect_points_region_growing(volumeName, yesCbct, intensity_threshold=3000)
- volume_points_dict[(scan_type, volumeName)] = grouped_points
- # Print the results
- # print(f"\nCBCT Volumes: {cbct_list}")
- # print(f"CT Volumes: {ct_list}")
- # print("\nDetected Points by Volume:")
- # for (scan_type, vol_name), points in volume_points_dict.items():
- # print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.")
- if cbct_list and ct_list:
- # Izberi prvi CT volumen kot referenco
- ct_volume_name = ct_list[0]
- ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]]
- if len(ct_points) < 3:
- print("CT volumen nima dovolj točk za registracijo.")
- else:
- #print("CT points: ", np.array(ct_points))
-
- for cbct_volume_name in cbct_list:
- # Izvleci točke za trenutni CBCT volumen
- cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]]
- print(f"\nProcessing CBCT Volume: {cbct_volume_name}")
- if len(cbct_points) < 3:
- print(f"CBCT Volume '{cbct_volume_name}' nima dovolj točk za registracijo.")
- continue
- #print("CBCT points: ", np.array(cbct_points))
- # Display the results for the current CBCT volume
- # print("\nSVD Method:")
- # print("Rotation Matrix:\n", svd_rotation_matrix)
- # print("Translation Vector:\n", svd_translation_vector)
- # print("\nHorn Method:")
- # print("Rotation Matrix:\n", horn_rotation_matrix)
- # print("Translation Vector:\n", horn_translation_vector)
- # print("\nQuaternion Method:")
- # print("Rotation Matrix:\n", quaternion_rotation_matrix)
- # print("Translation Vector:\n", quaternion_translation_vector)
-
-
- # Izberi metodo glede na uporabnikov izbor
- if selectedMethod == "Kabsch":
- chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
- chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
- print("\nKabsch Method:")
- print("Rotation Matrix:\n", chosen_rotation_matrix)
- print("Translation Vector:\n", chosen_translation_vector)
- elif selectedMethod == "Horn":
- chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
- chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
- print("\nHorn Method:")
- print("Rotation Matrix:\n", chosen_rotation_matrix)
- print("Translation Vector:\n", chosen_translation_vector)
- elif selectedMethod == "Iterative Closest Point (Kabsch)":
- new_points, chosen_rotation_matrix, chosen_translation_vector = icp_algorithm(cbct_points, ct_points)
- #chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
- print("\Iterative Closest Point Method:")
- print("Rotation Matrix:\n", chosen_rotation_matrix)
- print("Translation Vector:\n", chosen_translation_vector)
- imeTransformNoda = cbct_volume_name + " Transform"
- # Ustvari vtkTransformNode in ga poveži z CBCT volumenom
- transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
- # Kliči funkcijo, ki uporabi matriki
- vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector)
- # Dodaj transform v node
- transform_node.SetAndObserveTransformToParent(vtk_transform)
- # Pridobi CBCT volumen in aplikacijo transformacije
- cbct_volume_node = slicer.util.getNode(cbct_volume_name)
- cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID()) # Pripni transform node na volumen
- # Uporabi transformacijo na volumnu (fizična aplikacija)
- slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node) # Uporabi transform na volumen
- print("Transform uspešen na", cbct_volume_name)
-
-
- #transformed_cbct_image = create_vtk_transform(cbct_image_sitk, chosen_rotation_matrix, chosen_translation_vector)
- else:
- print("CBCT ali CT volumen ni bil najden.")
|