SeekTransformModule.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. import os
  2. import numpy as np
  3. import scipy
  4. from scipy.spatial.distance import cdist
  5. from scipy.spatial.transform import Rotation as R
  6. import slicer
  7. from DICOMLib import DICOMUtils
  8. from collections import deque
  9. import vtk
  10. from slicer.ScriptedLoadableModule import *
  11. import qt
  12. #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read())
  13. class SeekTransformModule(ScriptedLoadableModule):
  14. """
  15. Module description shown in the module panel.
  16. """
  17. def __init__(self, parent):
  18. ScriptedLoadableModule.__init__(self, parent)
  19. self.parent.title = "Seek Transform module"
  20. self.parent.categories = ["Image Processing"]
  21. self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"]
  22. self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes."
  23. self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen"
  24. class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
  25. """
  26. GUI of the module.
  27. """
  28. def setup(self):
  29. ScriptedLoadableModuleWidget.setup(self)
  30. # Dropdown menu za izbiro metode
  31. self.rotationMethodComboBox = qt.QComboBox()
  32. self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"])
  33. self.layout.addWidget(self.rotationMethodComboBox)
  34. # Load button
  35. self.applyButton = qt.QPushButton("Find markers and transform")
  36. self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes."
  37. self.applyButton.enabled = True
  38. self.layout.addWidget(self.applyButton)
  39. # Connect button to logic
  40. self.applyButton.connect('clicked(bool)', self.onApplyButton)
  41. self.layout.addStretch(1)
  42. def onApplyButton(self):
  43. logic = MyTransformModuleLogic()
  44. selectedMethod = self.rotationMethodComboBox.currentText #izberi metodo izračuna rotacije
  45. logic.run(selectedMethod)
  46. class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
  47. """
  48. Core logic of the module.
  49. """
  50. def run(self, selectedMethod):
  51. def group_points(points, threshold):
  52. # Function to group points that are close to each other
  53. grouped_points = []
  54. while points:
  55. point = points.pop() # Take one point from the list
  56. group = [point] # Start a new group
  57. # Find all points close to this one
  58. distances = cdist([point], points) # Calculate distances from this point to others
  59. close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
  60. # Add the close points to the group
  61. group.extend([points[i] for i in close_points])
  62. # Remove the grouped points from the list
  63. points = [point for i, point in enumerate(points) if i not in close_points]
  64. # Add the group to the result
  65. grouped_points.append(group)
  66. return grouped_points
  67. def region_growing(image_data, seed, intensity_threshold, max_distance):
  68. dimensions = image_data.GetDimensions()
  69. visited = set()
  70. region = []
  71. queue = deque([seed])
  72. while queue:
  73. x, y, z = queue.popleft()
  74. if (x, y, z) in visited:
  75. continue
  76. visited.add((x, y, z))
  77. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  78. if voxel_value >= intensity_threshold:
  79. region.append((x, y, z))
  80. # Add neighbors within bounds
  81. for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
  82. nx, ny, nz = x + dx, y + dy, z + dz
  83. if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
  84. if (nx, ny, nz) not in visited:
  85. queue.append((nx, ny, nz))
  86. return region
  87. def detect_points_region_growing(volume_name, yesCbct, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=140, max_distance=9, centroid_merge_threshold=5):
  88. volume_node = slicer.util.getNode(volume_name)
  89. if not volume_node:
  90. raise RuntimeError(f"Volume {volume_name} not found.")
  91. image_data = volume_node.GetImageData()
  92. matrix = vtk.vtkMatrix4x4()
  93. volume_node.GetIJKToRASMatrix(matrix)
  94. dimensions = image_data.GetDimensions()
  95. #detected_regions = []
  96. if yesCbct: #je cbct?
  97. valid_x_min, valid_x_max = 0, dimensions[0] - 1
  98. valid_y_min, valid_y_max = 0, dimensions[1] - 1
  99. valid_z_min, valid_z_max = 0, dimensions[2] - 1
  100. else:
  101. valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
  102. valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
  103. valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
  104. visited = set()
  105. def grow_region(x, y, z):
  106. if (x, y, z) in visited:
  107. return None
  108. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  109. if voxel_value < intensity_threshold:
  110. return None
  111. region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
  112. if region:
  113. for point in region:
  114. visited.add(tuple(point))
  115. return region
  116. return None
  117. regions = []
  118. for z in range(valid_z_min, valid_z_max + 1):
  119. for y in range(valid_y_min, valid_y_max + 1):
  120. for x in range(valid_x_min, valid_x_max + 1):
  121. region = grow_region(x, y, z)
  122. if region:
  123. regions.append(region)
  124. # Collect centroids using intensity-weighted average
  125. centroids = []
  126. for region in regions:
  127. points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
  128. intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
  129. if intensities.sum() > 0:
  130. weighted_centroid = np.average(points, axis=0, weights=intensities)
  131. max_intensity = intensities.max()
  132. centroids.append((np.round(weighted_centroid, 2), max_intensity))
  133. unique_centroids = []
  134. for centroid, intensity in centroids:
  135. if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
  136. unique_centroids.append((centroid, intensity))
  137. markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
  138. for centroid, intensity in unique_centroids:
  139. markups_node.AddControlPoint(*centroid)
  140. #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
  141. return unique_centroids
  142. def compute_Kabsch_rotation(moving_points, fixed_points):
  143. """
  144. Computes the optimal rotation matrix to align moving_points to fixed_points.
  145. Parameters:
  146. moving_points (list or ndarray): List of points to be rotated CBCT
  147. fixed_points (list or ndarray): List of reference points CT
  148. Returns:
  149. ndarray: Optimal rotation matrix.
  150. """
  151. assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
  152. # Convert to numpy arrays
  153. moving = np.array(moving_points)
  154. fixed = np.array(fixed_points)
  155. # Compute centroids
  156. centroid_moving = np.mean(moving, axis=0)
  157. centroid_fixed = np.mean(fixed, axis=0)
  158. # Center the points
  159. moving_centered = moving - centroid_moving
  160. fixed_centered = fixed - centroid_fixed
  161. # Compute covariance matrix
  162. H = np.dot(moving_centered.T, fixed_centered)
  163. # SVD decomposition
  164. U, _, Vt = np.linalg.svd(H)
  165. Rotate_optimal = np.dot(Vt.T, U.T)
  166. # Correct improper rotation (reflection)
  167. if np.linalg.det(Rotate_optimal) < 0:
  168. Vt[-1, :] *= -1
  169. Rotate_optimal = np.dot(Vt.T, U.T)
  170. return Rotate_optimal
  171. def compute_Horn_rotation(moving_points, fixed_points):
  172. """
  173. Computes the optimal rotation matrix using quaternions.
  174. Parameters:
  175. moving_points (list or ndarray): List of points to be rotated.
  176. fixed_points (list or ndarray): List of reference points.
  177. Returns:
  178. ndarray: Optimal rotation matrix.
  179. """
  180. assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
  181. moving = np.array(moving_points)
  182. fixed = np.array(fixed_points)
  183. # Compute centroids
  184. centroid_moving = np.mean(moving, axis=0)
  185. centroid_fixed = np.mean(fixed, axis=0)
  186. # Center the points
  187. moving_centered = moving - centroid_moving
  188. fixed_centered = fixed - centroid_fixed
  189. # Construct the cross-dispersion matrix
  190. M = np.dot(moving_centered.T, fixed_centered)
  191. # Construct the N matrix for quaternion solution
  192. A = M - M.T
  193. delta = np.array([A[1, 2], A[2, 0], A[0, 1]])
  194. trace = np.trace(M)
  195. N = np.zeros((4, 4))
  196. N[0, 0] = trace
  197. N[1:, 0] = delta
  198. N[0, 1:] = delta
  199. N[1:, 1:] = M + M.T - np.eye(3) * trace
  200. # Compute the eigenvector corresponding to the maximum eigenvalue
  201. eigvals, eigvecs = np.linalg.eigh(N)
  202. q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion
  203. # Convert quaternion to rotation matrix
  204. w, x, y, z = q_optimal
  205. R = np.array([
  206. [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)],
  207. [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)],
  208. [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)]
  209. ])
  210. return R
  211. def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
  212. """
  213. Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
  214. Parameters:
  215. moving_points (list or ndarray): List of points to be aligned.
  216. fixed_points (list or ndarray): List of reference points.
  217. max_iterations (int): Maximum number of iterations.
  218. tolerance (float): Convergence tolerance.
  219. Returns:
  220. ndarray: Transformed moving points.
  221. ndarray: Optimal rotation matrix.
  222. ndarray: Optimal translation vector.
  223. """
  224. # Convert to numpy arrays
  225. moving = np.array(moving_points)
  226. fixed = np.array(fixed_points)
  227. # Initialize transformation
  228. R = np.eye(3) # Identity matrix for rotation
  229. t = np.zeros(3) # Zero vector for translation
  230. prev_error = np.inf # Initialize previous error to a large value
  231. for iteration in range(max_iterations):
  232. # Step 1: Find the nearest neighbors (correspondences)
  233. distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
  234. nearest_indices = np.argmin(distances, axis=1)
  235. nearest_points = fixed[nearest_indices]
  236. # Step 2: Compute the optimal rotation and translation
  237. R_new = compute_Kabsch_rotation(moving, nearest_points)
  238. centroid_moving = np.mean(moving, axis=0)
  239. centroid_fixed = np.mean(nearest_points, axis=0)
  240. t_new = centroid_fixed - np.dot(R_new, centroid_moving)
  241. # Step 3: Apply the transformation
  242. moving = np.dot(moving, R_new.T) + t_new
  243. # Update the cumulative transformation
  244. R = np.dot(R_new, R)
  245. t = np.dot(R_new, t) + t_new
  246. # Step 4: Check for convergence
  247. mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
  248. if np.abs(prev_error - mean_error) < tolerance:
  249. print(f"ICP converged after {iteration + 1} iterations.")
  250. break
  251. prev_error = mean_error
  252. else:
  253. print(f"ICP reached maximum iterations ({max_iterations}).")
  254. return moving, R, t
  255. def compute_translation(moving_points, fixed_points, rotation_matrix):
  256. """
  257. Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
  258. Parameters:
  259. moving_points (list or ndarray): List of points to be translated.
  260. fixed_points (list or ndarray): List of reference points.
  261. rotation_matrix (ndarray): Rotation matrix.
  262. Returns:
  263. ndarray: Translation vector.
  264. """
  265. # Convert to numpy arrays
  266. moving = np.array(moving_points)
  267. fixed = np.array(fixed_points)
  268. # Compute centroids
  269. centroid_moving = np.mean(moving, axis=0)
  270. centroid_fixed = np.mean(fixed, axis=0)
  271. # Compute translation
  272. translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
  273. return translation
  274. def create_vtk_transform(rotation_matrix, translation_vector):
  275. """
  276. Creates a vtkTransform from a rotation matrix and a translation vector.
  277. """
  278. # Create a 4x4 transformation matrix
  279. transform_matrix = np.eye(4) # Start with an identity matrix
  280. transform_matrix[:3, :3] = rotation_matrix # Set rotation part
  281. transform_matrix[:3, 3] = translation_vector # Set translation part
  282. # Convert to vtkMatrix4x4
  283. vtk_matrix = vtk.vtkMatrix4x4()
  284. for i in range(4):
  285. for j in range(4):
  286. vtk_matrix.SetElement(i, j, transform_matrix[i, j])
  287. print("Transform matrix: ")
  288. print(vtk_matrix)
  289. # Create vtkTransform and set the matrix
  290. transform = vtk.vtkTransform()
  291. transform.SetMatrix(vtk_matrix)
  292. return transform
  293. # Initialize lists and dictionary
  294. cbct_list = []
  295. ct_list = []
  296. volume_points_dict = {}
  297. # Process loaded volumes
  298. for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
  299. volumeName = volumeNode.GetName()
  300. #print(volumeName)
  301. shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
  302. imageItem = shNode.GetItemByDataNode(volumeNode)
  303. # Pridobi vse atribute za ta element
  304. #attributeNames = shNode.GetItemAttributeNames(imageItem)
  305. #modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
  306. #manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
  307. #print(modality)
  308. # Check if the volume is loaded into the scene
  309. if not slicer.mrmlScene.IsNodePresent(volumeNode):
  310. print(f"Volume {volumeName} not present in the scene.")
  311. continue
  312. manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
  313. #print(manufacturer.lower())
  314. # Determine scan type
  315. if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower():
  316. cbct_list.append(volumeName)
  317. scan_type = "CBCT"
  318. yesCbct = True
  319. else: #Siemens or phillips imamo CTje
  320. ct_list.append(volumeName)
  321. scan_type = "CT"
  322. yesCbct = False
  323. # Detect points using region growing
  324. grouped_points = detect_points_region_growing(volumeName, yesCbct, intensity_threshold=3000)
  325. volume_points_dict[(scan_type, volumeName)] = grouped_points
  326. # Print the results
  327. # print(f"\nCBCT Volumes: {cbct_list}")
  328. # print(f"CT Volumes: {ct_list}")
  329. # print("\nDetected Points by Volume:")
  330. # for (scan_type, vol_name), points in volume_points_dict.items():
  331. # print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.")
  332. if cbct_list and ct_list:
  333. # Izberi prvi CT volumen kot referenco
  334. ct_volume_name = ct_list[0]
  335. ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]]
  336. if len(ct_points) < 3:
  337. print("CT volumen nima dovolj točk za registracijo.")
  338. else:
  339. print("CT points: ", np.array(ct_points))
  340. for cbct_volume_name in cbct_list:
  341. # Izvleci točke za trenutni CBCT volumen
  342. cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]]
  343. print(f"\nProcessing CBCT Volume: {cbct_volume_name}")
  344. if len(cbct_points) < 3:
  345. print(f"CBCT Volume '{cbct_volume_name}' nima dovolj točk za registracijo.")
  346. continue
  347. #print("CBCT points: ", np.array(cbct_points))
  348. # Display the results for the current CBCT volume
  349. # print("\nSVD Method:")
  350. # print("Rotation Matrix:\n", svd_rotation_matrix)
  351. # print("Translation Vector:\n", svd_translation_vector)
  352. # print("\nHorn Method:")
  353. # print("Rotation Matrix:\n", horn_rotation_matrix)
  354. # print("Translation Vector:\n", horn_translation_vector)
  355. # print("\nQuaternion Method:")
  356. # print("Rotation Matrix:\n", quaternion_rotation_matrix)
  357. # print("Translation Vector:\n", quaternion_translation_vector)
  358. # Izberi metodo glede na uporabnikov izbor
  359. if selectedMethod == "Kabsch":
  360. chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
  361. chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  362. #print("\nKabsch Method:")
  363. #print("Rotation Matrix:\n", chosen_rotation_matrix)
  364. #print("Translation Vector:\n", chosen_translation_vector)
  365. elif selectedMethod == "Horn":
  366. chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
  367. chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  368. #print("\nHorn Method:")
  369. #print("Rotation Matrix:\n", chosen_rotation_matrix)
  370. #print("Translation Vector:\n", chosen_translation_vector)
  371. elif selectedMethod == "Iterative Closest Point (Kabsch)":
  372. new_points, chosen_rotation_matrix, chosen_translation_vector = icp_algorithm(cbct_points, ct_points)
  373. #chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
  374. #print("\Iterative Closest Point Method:")
  375. #print("Rotation Matrix:\n", chosen_rotation_matrix)
  376. #print("Translation Vector:\n", chosen_translation_vector)
  377. imeTransformNoda = cbct_volume_name + " Transform"
  378. # Ustvari vtkTransformNode in ga poveži z CBCT volumenom
  379. transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
  380. # Kliči funkcijo, ki uporabi matriki
  381. vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector)
  382. # Dodaj transform v node
  383. transform_node.SetAndObserveTransformToParent(vtk_transform)
  384. # Pridobi CBCT volumen in aplikacijo transformacije
  385. cbct_volume_node = slicer.util.getNode(cbct_volume_name)
  386. cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID()) # Pripni transform node na volumen
  387. # Uporabi transformacijo na volumnu (fizična aplikacija)
  388. slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node) # Uporabi transform na volumen
  389. print("Transform uspešen na", cbct_volume_name)
  390. #transformed_cbct_image = create_vtk_transform(cbct_image_sitk, chosen_rotation_matrix, chosen_translation_vector)
  391. else:
  392. print("CBCT ali CT volumen ni bil najden.")