1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813 |
- import os
- import numpy as np
- import scipy
- import re
- from scipy.spatial.distance import cdist
- from scipy.spatial.transform import Rotation as R
- import slicer
- import slicer.util
- import itertools
- import DICOMLib
- from DICOMLib import DICOMUtils
- import DicomRtImportExportPlugin
- from collections import deque, Counter
- import vtk
- from slicer.ScriptedLoadableModule import *
- import qt
- import matplotlib.pyplot as plt
- import csv
- import time
- import logging
- import matplotlib
- matplotlib.use('Agg') # << to dodaš ZGORAJ, da omogoči PNG zapis brez GUI
- from mpl_toolkits.mplot3d import Axes3D
- #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read())
- cumulative_matrices = {}
- class SeekTransformModule(ScriptedLoadableModule):
- """
- Module description shown in the module panel.
- """
- def __init__(self, parent):
- ScriptedLoadableModule.__init__(self, parent)
- self.parent.title = "Seek Transform module"
- self.parent.categories = ["Image Processing"]
- self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"]
- self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes."
- self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen"
- class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
- """
- GUI of the module.
- """
- def setup(self):
- ScriptedLoadableModuleWidget.setup(self)
- # Dropdown menu za izbiro metode
- self.rotationMethodComboBox = qt.QComboBox()
- self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Horn)"])
- self.layout.addWidget(self.rotationMethodComboBox)
- # Checkboxi za transformacije
- self.scalingCheckBox = qt.QCheckBox("Scaling")
- self.scalingCheckBox.setChecked(True)
- self.layout.addWidget(self.scalingCheckBox)
-
- self.rotationCheckBox = qt.QCheckBox("Rotation")
- self.rotationCheckBox.setChecked(True)
- self.layout.addWidget(self.rotationCheckBox)
- self.translationCheckBox = qt.QCheckBox("Translation")
- self.translationCheckBox.setChecked(True)
- self.layout.addWidget(self.translationCheckBox)
- self.markersCheckBox = qt.QCheckBox("Place control points for detected markers")
- self.markersCheckBox.setChecked(False)
- self.layout.addWidget(self.markersCheckBox)
-
- self.writefileCheckBox = qt.QCheckBox("Write data to csv file")
- self.writefileCheckBox.setChecked(True)
- self.layout.addWidget(self.writefileCheckBox)
-
- self.tableCheckBox = qt.QCheckBox("Find top of the table and match height")
- self.tableCheckBox.setChecked(True)
- self.layout.addWidget(self.tableCheckBox)
-
- self.DicomCheckBox = qt.QCheckBox("Save transformed DICOM")
- self.DicomCheckBox.setChecked(True)
- self.layout.addWidget(self.DicomCheckBox)
- # Load button
- self.applyButton = qt.QPushButton("Find markers and transform")
- self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes."
- self.applyButton.enabled = True
- self.layout.addWidget(self.applyButton)
- # Connect button to logic
- self.applyButton.connect('clicked(bool)', self.onApplyButton)
- self.layout.addStretch(1)
- def onApplyButton(self):
- # Nastavi globalni logger
- log_file_path = os.path.join("C:/Users/lkomar/Documents/Prostata", "seektransform_log.txt")
- logging.basicConfig(filename=log_file_path, level=logging.INFO, format='%(asctime)s - %(message)s')
-
- try:
- logging.info("▶️ onApplyButton pressed.")
- except Exception as e:
- print("❌ Logging setup failed:", e)
-
- logic = MyTransformModuleLogic()
- selectedMethod = self.rotationMethodComboBox.currentText # izberi metodo izračuna rotacije
- # Preberi stanje checkboxov
- applyRotation = self.rotationCheckBox.isChecked()
- applyTranslation = self.translationCheckBox.isChecked()
- applyScaling = self.scalingCheckBox.isChecked()
- applyMarkers = self.markersCheckBox.isChecked()
- writefilecheck = self.writefileCheckBox.isChecked()
- tablefind = self.tableCheckBox.isChecked()
- saveasdicom = self.DicomCheckBox.isChecked()
- # Pokliči logiko z izbranimi nastavitvami
- logic.run(selectedMethod, applyRotation, applyTranslation, applyScaling, applyMarkers, writefilecheck, tablefind, saveasdicom)
- class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
- """
- Core logic of the module.
- """
-
-
- def run(self, selectedMethod, applyRotation, applyTranslation, applyScaling, applymarkers, writefilecheck, tablefind, save_as_dicom):
- start_time = time.time()
- print("Calculating...")
- #slicer.util.delayDisplay(f"Starting", 1000)
-
-
- def group_points(points, threshold):
- # Function to group points that are close to each other
- grouped_points = []
- while points:
- point = points.pop() # Take one point from the list
- group = [point] # Start a new group
-
- # Find all points close to this one
- distances = cdist([point], points) # Calculate distances from this point to others
- close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
-
- # Add the close points to the group
- group.extend([points[i] for i in close_points])
-
- # Remove the grouped points from the list
- points = [point for i, point in enumerate(points) if i not in close_points]
-
- # Add the group to the result
- grouped_points.append(group)
-
- return grouped_points
- def region_growing(image_data, seed, intensity_threshold, max_distance):
- dimensions = image_data.GetDimensions()
- visited = set()
- region = []
- queue = deque([seed])
- while queue:
- x, y, z = queue.popleft()
- if (x, y, z) in visited:
- continue
- visited.add((x, y, z))
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
-
- if voxel_value >= intensity_threshold:
- region.append((x, y, z))
- # Add neighbors within bounds
- for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
- nx, ny, nz = x + dx, y + dy, z + dz
- if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
- if (nx, ny, nz) not in visited:
- queue.append((nx, ny, nz))
- return region
- def compute_scaling_stddev(moving_points, fixed_points):
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Standard deviation around centroid, po osi
- scaling_factors = np.std(fixed, axis=0) / np.std(moving, axis=0)
- return tuple(scaling_factors)
- def compute_scaling(cbct_points, scaling_factors):
- """Applies non-uniform scaling to CBCT points.
-
- Args:
- cbct_points (list of lists): List of (x, y, z) points.
- scaling_factors (tuple): Scaling factors (sx, sy, sz) for each axis.
- Returns:
- np.ndarray: Scaled CBCT points.
- """
- sx, sy, sz = scaling_factors # Extract scaling factors
- scaling_matrix = np.diag([sx, sy, sz]) # Create diagonal scaling matrix
- cbct_points_np = np.array(cbct_points) # Convert to numpy array
- scaled_points = cbct_points_np @ scaling_matrix.T # Apply scaling
-
- scaling_4x4 = np.eye(4)
- scaling_4x4[0, 0] = sx
- scaling_4x4[1, 1] = sy
- scaling_4x4[2, 2] = sz
- return scaled_points.tolist() # Convert back to list
- def compute_Kabsch_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be rotated CBCT
- fixed_points (list or ndarray): List of reference points CT
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
- # Compute covariance matrix
- H = np.dot(moving_centered.T, fixed_centered)
- # SVD decomposition
- U, _, Vt = np.linalg.svd(H)
- Rotate_optimal = np.dot(Vt.T, U.T)
- # Correct improper rotation (reflection)
- if np.linalg.det(Rotate_optimal) < 0:
- Vt[-1, :] *= -1
- Rotate_optimal = np.dot(Vt.T, U.T)
- return Rotate_optimal
- def compute_Horn_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix using quaternions.
- Parameters:
- moving_points (list or ndarray): List of points to be rotated.
- fixed_points (list or ndarray): List of reference points.
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
-
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
-
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
-
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
-
- # Construct the cross-dispersion matrix
- M = np.dot(moving_centered.T, fixed_centered)
-
- # Construct the N matrix for quaternion solution
- A = M - M.T
- delta = np.array([A[1, 2], A[2, 0], A[0, 1]])
- trace = np.trace(M)
-
- N = np.zeros((4, 4))
- N[0, 0] = trace
- N[1:, 0] = delta
- N[0, 1:] = delta
- N[1:, 1:] = M + M.T - np.eye(3) * trace
-
- # Compute the eigenvector corresponding to the maximum eigenvalue
- eigvals, eigvecs = np.linalg.eigh(N)
- q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion
-
- # Convert quaternion to rotation matrix
- w, x, y, z = q_optimal
- R = np.array([
- [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)],
- [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)],
- [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)]
- ])
-
- return R
- def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
- """
- Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be aligned.
- fixed_points (list or ndarray): List of reference points.
- max_iterations (int): Maximum number of iterations.
- tolerance (float): Convergence tolerance.
- Returns:
- ndarray: Transformed moving points.
- ndarray: Optimal rotation matrix.
- ndarray: Optimal translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Initialize transformation
- R = np.eye(3) # Identity matrix for rotation
- t = np.zeros(3) # Zero vector for translation
- prev_error = np.inf # Initialize previous error to a large value
- for iteration in range(max_iterations):
- # Step 1: Find the nearest neighbors (correspondences)
- distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
- nearest_indices = np.argmin(distances, axis=1)
- nearest_points = fixed[nearest_indices]
- # Step 2: Compute the optimal rotation and translation
- R_new = compute_Horn_rotation(moving, nearest_points)
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(nearest_points, axis=0)
- t_new = centroid_fixed - np.dot(R_new, centroid_moving)
- # Step 3: Apply the transformation
- moving = np.dot(moving, R_new.T) + t_new
- # Update the cumulative transformation
- R = np.dot(R_new, R)
- t = np.dot(R_new, t) + t_new
- # Step 4: Check for convergence
- mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
- if np.abs(prev_error - mean_error) < tolerance:
- print(f"ICP converged after {iteration + 1} iterations.")
- break
- prev_error = mean_error
- else:
- print(f"ICP reached maximum iterations ({max_iterations}).")
- return moving, R, t
- def match_points(cbct_points, ct_points, auto_weights=False, fallback_if_worse=False, normalize_lengths=True, normalize_angles=False, min_distance=5, w_order=1.0):
- def side_lengths(points):
- lengths = [
- np.linalg.norm(points[0] - points[1]),
- np.linalg.norm(points[1] - points[2]),
- np.linalg.norm(points[2] - points[0])
- ]
- return lengths
- def triangle_angles(points):
- a = np.linalg.norm(points[1] - points[2])
- b = np.linalg.norm(points[0] - points[2])
- c = np.linalg.norm(points[0] - points[1])
- angle_A = np.arccos(np.clip((b**2 + c**2 - a**2) / (2 * b * c), -1.0, 1.0))
- angle_B = np.arccos(np.clip((a**2 + c**2 - b**2) / (2 * a * c), -1.0, 1.0))
- angle_C = np.pi - angle_A - angle_B
- return [angle_A, angle_B, angle_C]
- def normalize(vec):
- norm = np.linalg.norm(vec)
- return [v / norm for v in vec] if norm > 0 else vec
- def permutation_score(perm, ct_lengths, ct_angles, w_len, w_ang, penalty_angle_thresh=np.deg2rad(10)):
- perm_lengths = side_lengths(perm)
- perm_angles = triangle_angles(perm)
- # Filter za minimum razdalje
- if min(perm_lengths) < min_distance:
- return float('inf')
- lengths_1 = normalize(perm_lengths) if normalize_lengths else perm_lengths
- lengths_2 = normalize(ct_lengths) if normalize_lengths else ct_lengths
- angles_1 = normalize(perm_angles) if normalize_angles else perm_angles
- angles_2 = normalize(ct_angles) if normalize_angles else ct_angles
- score_len = sum(abs(a - b) for a, b in zip(lengths_1, lengths_2))
- score_ang = sum(abs(a - b) for a, b in zip(angles_1, angles_2))
-
- order_penalty = order_mismatch_penalty(ct_points, perm, axis='z')
- return w_len * score_len + w_ang * score_ang + order_penalty + w_order * order_penalty
-
- def smart_sort_cbct_points(cbct_points, z_threshold=5.0):
- """
- Sortira točke tako, da poskusi najprej po Z. Če so razlike po Z manjše
- od praga, sortira po (Y, X), sicer sortira po Z.
- """
- z_values = [pt[2] for pt in cbct_points]
- z_range = max(z_values) - min(z_values)
- if z_range < z_threshold:
- # Sortiraj po Y, nato X (če so točke v isti ravnini po Z)
- return sorted(cbct_points, key=lambda pt: (pt[1], pt[0]))
- else:
- # Sortiraj po Z, nato Y, nato X
- return sorted(cbct_points, key=lambda pt: (pt[2], pt[1], pt[0]))
-
- def order_mismatch_penalty(ct_points, perm, axis='z'):
- axis_idx = {'x': 0, 'y': 1, 'z': 2}[axis]
- ct_sorted = np.argsort([pt[axis_idx] for pt in ct_points])
- perm_sorted = np.argsort([pt[axis_idx] for pt in perm])
- return sum(1 for a, b in zip(ct_sorted, perm_sorted) if a != b)
-
-
- cbct_points = list(cbct_points)
- print("CBCT points:", cbct_points)
- ct_lengths = side_lengths(np.array(ct_points))
- ct_angles = triangle_angles(np.array(ct_points))
- if auto_weights:
- var_len = np.var(ct_lengths)
- var_ang = np.var(ct_angles)
- total_var = var_len + var_ang + 1e-6
- weight_length = (1 - var_len / total_var)
- weight_angle = (1 - var_ang / total_var)
- else:
- weight_length = 0.8
- weight_angle = 0.2
- cbct_sorted = smart_sort_cbct_points(cbct_points)
- original_score = permutation_score(np.array(cbct_sorted), ct_lengths, ct_angles, weight_length, weight_angle)
- # Če je ta rezultat dovolj dober, uporabi
- best_score = float('inf')
- best_perm = None
- if original_score < float('inf'): # lahko dodaš prag če želiš
- best_score = original_score
- best_perm = np.array(cbct_sorted)
- # Nato preveri vse permutacije (vključno s prvotnim vrstnim redom, če fallback_if_worse=True)
- for perm in itertools.permutations(cbct_points):
- perm = np.array(perm)
- score = permutation_score(perm, ct_lengths, ct_angles, weight_length, weight_angle)
- if score < best_score:
- best_score = score
- best_perm = perm
- print(f"New best permutation found with perm: {perm}")
- #print("CT centroid:", np.mean(ct_points, axis=0))
- #print("CBCT centroid (best perm):", np.mean(best_perm, axis=0))
-
- if fallback_if_worse:
- #original_score = permutation_score(np.array(cbct_points), ct_lengths, ct_angles, weight_length, weight_angle)
- print("Original score: ", original_score)
- if original_score <= best_score:
- print("Fallback to original points due to worse score of the permutation.")
- return list(cbct_points)
- return list(best_perm)
- def compute_translation(moving_points, fixed_points, rotation_matrix):
- """
- Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
-
- Parameters:
- moving_points (list or ndarray): List of points to be translated.
- fixed_points (list or ndarray): List of reference points.
- rotation_matrix (ndarray): Rotation matrix.
- Returns:
- ndarray: Translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Compute translation
- translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
- return translation
- def create_vtk_transform(rotation_matrix, translation_vector, tablefound, study_name=None, cbct_volume_name=None, scaling_factors=None):
- """
- Creates a vtkTransform from scaling, rotation, and translation.
- Shrani tudi kumulativno matriko v globalni slovar cumulative_matrices.
- """
- # ----- Inicializacija -----
- global cumulative_matrices
- transform = vtk.vtkTransform()
- # ----- 1. Skaliranje -----
- if scaling_factors is not None:
- sx, sy, sz = scaling_factors
- transform.Scale(sx, sy, sz)
- # ----- 2. Rotacija -----
- # Rotacijsko matriko in translacijo pretvori v homogeno matriko
- affine_matrix = np.eye(4)
- affine_matrix[:3, :3] = rotation_matrix
- affine_matrix[:3, 3] = translation_vector
- # Vstavi v vtkMatrix4x4
- vtk_matrix = vtk.vtkMatrix4x4()
- for i in range(4):
- for j in range(4):
- vtk_matrix.SetElement(i, j, affine_matrix[i, j])
- transform.Concatenate(vtk_matrix)
- # ----- 3. Debug izpis -----
- print("Transform matrix:")
- for i in range(4):
- print(" ".join(f"{vtk_matrix.GetElement(i, j):.6f}" for j in range(4)))
- # ----- 4. Shrani v kumulativni matriki -----
- if study_name and cbct_volume_name:
- key = (study_name, cbct_volume_name)
- if key not in cumulative_matrices:
- cumulative_matrices[key] = np.eye(4)
- cumulative_matrices[key] = np.dot(cumulative_matrices[key], affine_matrix)
- return transform
- def save_transform_matrix(matrix, study_name, cbct_volume_name):
- """
- Appends the given 4x4 matrix to a text file under the given study folder.
- """
- base_folder = os.path.join(os.path.dirname(__file__), "Transformacijske matrike")
- study_folder = os.path.join(base_folder, study_name)
- os.makedirs(study_folder, exist_ok=True) # Create folders if they don't exist
- safe_cbct_name = re.sub(r'[<>:"/\\|?*]', '_', cbct_volume_name)
- # Preveri ali je CT miza najdena
- filename = os.path.join(study_folder, f"{safe_cbct_name}.txt")
- with open(filename, "w") as f:
- #f.write("Transformacija:\n")
- for row in matrix:
- f.write(" ".join(f"{elem:.6f}" for elem in row) + "\n")
- f.write("\n") # Dodaj prazen vrstico med transformacijami
- #print(f"Transform matrix saved to {filename}")
-
- def detect_points_region_growing(volume_name, yesCbct, create_marker, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=50, z_max=140, max_distance=9, centroid_merge_threshold=5):
- volume_node = find_volume_node_by_partial_name(volume_name)
- if not volume_node:
- raise RuntimeError(f"Volume {volume_name} not found.")
-
- image_data = volume_node.GetImageData()
- matrix = vtk.vtkMatrix4x4()
- volume_node.GetIJKToRASMatrix(matrix)
- dimensions = image_data.GetDimensions()
- #detected_regions = []
- if yesCbct: #je cbct ali ct?
- valid_x_min, valid_x_max = 0, dimensions[0] - 1
- valid_y_min, valid_y_max = 0, dimensions[1] - 1
- valid_z_min, valid_z_max = 0, dimensions[2] - 1
- else:
- valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
- valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
- valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
- visited = set()
- def grow_region(x, y, z):
- if (x, y, z) in visited:
- return None
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
- if voxel_value < intensity_threshold:
- return None
- region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
- if region:
- for point in region:
- visited.add(tuple(point))
- return region
- return None
- regions = []
- for z in range(valid_z_min, valid_z_max + 1):
- for y in range(valid_y_min, valid_y_max + 1):
- for x in range(valid_x_min, valid_x_max + 1):
- region = grow_region(x, y, z)
- if region:
- regions.append(region)
- # Collect centroids using intensity-weighted average
- centroids = []
- for region in regions:
- points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
- intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
-
- if intensities.sum() > 0:
- weighted_centroid = np.average(points, axis=0, weights=intensities)
- max_intensity = intensities.max()
- centroids.append((np.round(weighted_centroid, 2), max_intensity))
- unique_centroids = []
- for centroid, intensity in centroids:
- if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
- unique_centroids.append((centroid, intensity))
-
- if create_marker:
- markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
- for centroid, intensity in unique_centroids:
- markups_node.AddControlPoint(*centroid)
- markups_node.SetDisplayVisibility(False)
- #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
- return unique_centroids
- def find_table_top_z(ct_volume_name, writefilecheck, makemarkerscheck, yesCbct):
- """
- Najde višino zgornjega roba mize v CT/CBCT volumnu in po želji doda marker v sceno.
- Args:
- ct_volume_name (str): Ime volumna.
- writefilecheck (bool): Ali naj se rezultat shrani v .csv.
- makemarkerscheck (bool): Ali naj se doda marker v 3D Slicer.
- yesCbct (bool): True, če je CBCT; False, če je CT.
- Returns:
- (float, int): Z komponenta v RAS prostoru, in Y indeks v slicerjevem volumnu.
- """
- # --- Pridobi volume node ---
- ct_volume_node = find_volume_node_by_partial_name(ct_volume_name)
- np_array = slicer.util.arrayFromVolume(ct_volume_node) # (Z, Y, X)
- ijkToRasMatrix = vtk.vtkMatrix4x4()
- ct_volume_node.GetIJKToRASMatrix(ijkToRasMatrix)
- # --- Določimo lokacijo stolpca ---
- z_index = np_array.shape[0] // 2 # srednji slice
- y_size = np_array.shape[1]
- # x_index = int(np_array.shape[2] * 0.15)
- # x_index = max(0, min(x_index, np_array.shape[2] - 1))
-
- # --- Izračun spodnje tretjine (spodnji del slike) ---
- y_start = int(y_size * 2 / 3)
- slice_data = np_array[z_index, :, :] # (Y, X)
- y_end = y_size # Do dna slike
- #column_values = slice_data[y_start:y_end, x_index] # (Y)
- # --- Parametri za rob ---
- threshold_high = -300 if yesCbct else -100
- threshold_low = -700 if yesCbct else -350
- min_jump = 100 if yesCbct else 100
- window_size = 4 # število voxelov nad/pod
- #previous_value = column_values[-1]
- table_top_y = None
- # --- Več stolpcev okoli x_index ---
- x_center = np_array.shape[2] // 2
- x_offset = 30 # 30 levo od sredine
- x_index_base = max(0, x_center - x_offset)
- candidate_y_values = []
- search_range = range(-5, 6) # od -5 do +5 stolpcev
-
- for dx in search_range:
- x_index = x_index_base + dx
- if x_index < 0 or x_index >= np_array.shape[2]:
- continue
- column_values = slice_data[y_start:y_end, x_index]
- for i in range(window_size, len(column_values) - window_size):
- curr = column_values[i]
- above_avg = np.mean(column_values[i - window_size:i])
- below_avg = np.mean(column_values[i + 1:i + 1 + window_size])
- if (threshold_low < curr < threshold_high
- and (above_avg - below_avg) > min_jump
- and below_avg < -400
- and above_avg > -300):
- y_found = y_start + i
- candidate_y_values.append(y_found)
- break # samo prvi zadetek v stolpcu
- if candidate_y_values:
- most_common_y, _ = Counter(candidate_y_values).most_common(1)[0]
- table_top_y = most_common_y
- print(f"✅ Rob mize (najpogostejši Y): {table_top_y}, pojavitev: {candidate_y_values.count(table_top_y)}/11")
-
- """ # --- Poišči skok navzdol pod prag (od spodaj navzgor) ---
- for i in range(len(column_values) - 2, -1, -1): # od spodaj proti vrhu
- intensity = column_values[i]
- if (intensity - previous_value) > min_jump and intensity < thresholdhigh and intensity > thresholdlow:
- table_top_y = y_start + i - 1
- print(f"✅ Rob mize najden pri Y = {table_top_y}, intenziteta = {intensity}")
- print("Column values (partial):", column_values.tolist())
- break
- previous_value = intensity """
- if table_top_y is None:
- print(f"⚠️ Rob mize ni bil najden (X = {x_index})")
- print("Column values (partial):", column_values.tolist())
- return None
- # --- Pretvorba v RAS koordinato ---
- table_ijk = [x_index, table_top_y, z_index]
- table_ras = np.array(ijkToRasMatrix.MultiplyPoint([*table_ijk, 1]))[:3]
- # --- Marker ---
- if makemarkerscheck:
- table_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"VišinaMize_{ct_volume_name}")
- table_node.AddControlPoint(table_ras)
- table_node.SetDisplayVisibility(False)
- # --- Shrani v CSV ---
- if writefilecheck:
- height_file = os.path.join(os.path.dirname(__file__), "heightdata.csv")
- with open(height_file, mode='a', newline='') as file:
- writer = csv.writer(file)
- modality = "CBCT" if yesCbct else "CT"
- writer.writerow([modality, ct_volume_name, f"Upper table edge at Z = {table_ras[1]:.2f} mm"])
- return table_ras[1], table_top_y
- def align_cbct_to_ct(volumeNode, scan_type, offset, CT_offset=None, CT_spacing=None):
- """
- Aligns CBCT volume to CT volume based on height offset.
- Args:
- volumeNode (vtkMRMLScalarVolumeNode): The volume node to be aligned.
- scan_type (str): The type of scan ("CT" or "CBCT").
- offset (float): The height offset of the current volume from the center in mm.
- CT_offset (float, optional): The height offset of the CT volume from the center. Required for CBCT alignment.
- CT_spacing (float, optional): The voxel spacing of the CT volume in mm (for scaling the offset).
- Returns:
- float: The alignment offset applied to the CBCT volume (if applicable).
- """
- if scan_type == "CT":
- CT_offset = offset
- CT_spacing = volumeNode.GetSpacing()[1]
- #print(f"CT offset set to: {CT_offset}, CT spacing: {CT_spacing} mm/voxel")
- return CT_offset, CT_spacing
- else:
- if CT_offset is None or CT_spacing is None:
- raise ValueError("CT_offset and CT_spacing must be provided to align CBCT to CT.")
- CBCT_offset = offset
- # Razlika v mm brez skaliranja na CBCT_spacing
- alignment_offset_mm = CT_offset
- #print(f"CT offset: {CT_offset}, CBCT offset: {CBCT_offset}")
- #print(f"CT spacing: {CT_spacing} mm/voxel, CBCT spacing: {volumeNode.GetSpacing()[1]} mm/voxel")
- #print(f"Aligning CBCT with CT. Offset in mm: {alignment_offset_mm}")
- # Uporabi transformacijo
- transform = vtk.vtkTransform()
- transform.Translate(0, alignment_offset_mm, 0)
- transformNode = slicer.vtkMRMLTransformNode()
- slicer.mrmlScene.AddNode(transformNode)
- transformNode.SetAndObserveTransformToParent(transform)
- volumeNode.SetAndObserveTransformNodeID(transformNode.GetID())
- slicer.vtkSlicerTransformLogic().hardenTransform(volumeNode)
- slicer.mrmlScene.RemoveNode(transformNode)
-
- # Poskusi najti ustrezen marker in ga premakniti
- marker_name = f"VišinaMize_{volumeNode.GetName()}"
-
- # Robustno iskanje markerja po imenu
- table_node = None
- for node in slicer.util.getNodesByClass("vtkMRMLMarkupsFiducialNode"):
- if node.GetName() == marker_name:
- table_node = node
- break
- if table_node is not None:
- current_point = [0, 0, 0]
- table_node.GetNthControlPointPosition(0, current_point)
- moved_point = [
- current_point[0],
- current_point[1] + alignment_offset_mm,
- current_point[2]
- ]
- table_node.SetNthControlPointPosition(0, *moved_point)
- return alignment_offset_mm
-
- def print_orientation(volume_name):
- node = find_volume_node_by_partial_name(volume_name)
- matrix = vtk.vtkMatrix4x4()
- node.GetIJKToRASMatrix(matrix)
- print(f"{volume_name} IJK→RAS:")
- for i in range(3):
- print([matrix.GetElement(i, j) for j in range(3)])
- def prealign_by_centroid(cbct_points, ct_points):
- """
- Predporavna CBCT markerje na CT markerje glede na centrične točke.
- Args:
- cbct_points: List ali ndarray točk iz CBCT.
- ct_points: List ali ndarray točk iz CT.
- Returns:
- List: CBCT točke premaknjene tako, da so centrične točke usklajene.
- """
- cbct_points = np.array(cbct_points)
- ct_points = np.array(ct_points)
- cbct_centroid = np.mean(cbct_points, axis=0)
- ct_centroid = np.mean(ct_points, axis=0)
- translation_vector = ct_centroid - cbct_centroid
- aligned_cbct = cbct_points + translation_vector
- return aligned_cbct, translation_vector
-
- def choose_best_translation(cbct_points, ct_points, rotation_matrix):
- """
- Izbere boljšo translacijo: centroidno ali povprečno po rotaciji (retranslation).
-
- Args:
- cbct_points (array-like): Točke iz CBCT (še ne rotirane).
- ct_points (array-like): Ciljne CT točke.
- rotation_matrix (ndarray): Rotacijska matrika.
- Returns:
- tuple: (best_translation_vector, transformed_cbct_points, used_method)
- """
- cbct_points = np.array(cbct_points)
- ct_points = np.array(ct_points)
-
- # 1. Rotiraj CBCT točke
- rotated_cbct = np.dot(cbct_points, rotation_matrix.T)
-
- # 2. Centroid translacija
- centroid_moving = np.mean(cbct_points, axis=0)
- centroid_fixed = np.mean(ct_points, axis=0)
- translation_centroid = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
- transformed_centroid = rotated_cbct + translation_centroid
- error_centroid = np.mean(np.linalg.norm(transformed_centroid - ct_points, axis=1))
- # 3. Retranslacija (srednja razlika)
- translation_recomputed = np.mean(ct_points - rotated_cbct, axis=0)
- transformed_recomputed = rotated_cbct + translation_recomputed
- error_recomputed = np.mean(np.linalg.norm(transformed_recomputed - ct_points, axis=1))
- # 4. Izberi boljšo
- if error_recomputed < error_centroid:
- #print(f"✅ Using retranslation (error: {error_recomputed:.2f} mm)")
- return translation_recomputed, transformed_recomputed, "retranslation"
- else:
- #print(f"✅ Using centroid-based translation (error: {error_centroid:.2f} mm)")
- return translation_centroid, transformed_centroid, "centroid"
- def rescale_points_to_match_spacing(points, source_spacing, target_spacing):
- scale_factors = np.array(target_spacing) / np.array(source_spacing)
- return np.array(points) * scale_factors
- def visualize_point_matches_in_slicer(cbct_points, ct_points, study_name="MatchVisualization"):
- assert len(cbct_points) == len(ct_points), "Mora biti enako število točk!"
- # Ustvari markups za CBCT
- cbct_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"{study_name}_CBCT")
- cbct_node.GetDisplayNode().SetSelectedColor(0, 0, 1) # modra
- # Ustvari markups za CT
- ct_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"{study_name}_CT")
- ct_node.GetDisplayNode().SetSelectedColor(1, 0, 0) # rdeča
- # Dodaj točke
- for i, (cbct, ct) in enumerate(zip(cbct_points, ct_points)):
- cbct_node.AddControlPoint(*cbct, f"CBCT_{i}")
- ct_node.AddControlPoint(*ct, f"CT_{i}")
- # Ustvari model z linijami med pari
- points = vtk.vtkPoints()
- lines = vtk.vtkCellArray()
- for i, (p1, p2) in enumerate(zip(cbct_points, ct_points)):
- id1 = points.InsertNextPoint(p1)
- id2 = points.InsertNextPoint(p2)
- line = vtk.vtkLine()
- line.GetPointIds().SetId(0, id1)
- line.GetPointIds().SetId(1, id2)
- lines.InsertNextCell(line)
- polyData = vtk.vtkPolyData()
- polyData.SetPoints(points)
- polyData.SetLines(lines)
- # Model node
- modelNode = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLModelNode", f"{study_name}_Connections")
- modelNode.SetAndObservePolyData(polyData)
- modelDisplay = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLModelDisplayNode")
- modelDisplay.SetColor(0, 0, 0) # črna
- modelDisplay.SetLineWidth(2)
- modelDisplay.SetVisibility(True)
- modelNode.SetAndObserveDisplayNodeID(modelDisplay.GetID())
- modelNode.SetAndObservePolyData(polyData)
- print(f"✅ Vizualizacija dodana za {study_name} (točke + povezave)")
-
- def remove_lowest_marker(points, axis=1):
- """
- Odstrani točko, ki je najnižja po dani osi (default Y-os v RAS prostoru).
- """
- arr = np.array(points)
- lowest_index = np.argmin(arr[:, axis])
- removed = points.pop(lowest_index)
- print(f"⚠️ Odstranjena najnižja točka (os {axis}): {removed}")
- return points
-
- def update_timing_csv(timing_data, study_name):
- file_path = os.path.join(os.path.dirname(__file__), "timing_summary.csv")
- file_exists = os.path.isfile(file_path)
- with open(file_path, mode='a', newline='') as csvfile:
- fieldnames = ["Study", "IO", "Fixing", "Table", "Scaling", "CentroidAlign", "Rotation", "Translation", "Transform", "FileSave", "Total"]
- writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
- if not file_exists:
- writer.writeheader()
- row = {"Study": study_name}
- row.update(timing_data)
- writer.writerow(row)
-
- def find_volume_node_by_partial_name(partial_name):
- for node in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
- if partial_name in node.GetName():
- return node
- raise RuntimeError(f"❌ Volume with name containing '{partial_name}' not found.")
-
- def convert_rtstruct_to_segmentation_nodes(ct_volume_node):
- shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
- segmentation_nodes = []
- # ✅ Najdi vse SegmentationNode-e, ki imajo segmente
- for seg_node in slicer.util.getNodesByClass("vtkMRMLSegmentationNode"):
- num_segments = seg_node.GetSegmentation().GetNumberOfSegments()
- if num_segments == 0:
- continue
- # Če še nima referenceVolume, jo nastavimo
- if not seg_node.GetNodeReferenceID("referenceVolume"):
- seg_node.SetReferenceImageGeometryParameterFromVolumeNode(ct_volume_node)
- seg_node.SetNodeReferenceID("referenceVolume", ct_volume_node.GetID())
- print(f"🔗 Nastavljena referenca na CT za: {seg_node.GetName()}")
- segmentation_nodes.append(seg_node)
- print(f"📎 Najdena segmentacija z vsebino: {seg_node.GetName()}, segmentov: {num_segments}")
- if segmentation_nodes:
- return segmentation_nodes
- for item_id in range(shNode.GetNumberOfItems()):
- modality = shNode.GetItemAttribute(item_id, "DICOM.Modality")
- if modality != "RTSTRUCT":
- continue
- rtstruct_node = shNode.GetItemDataNode(item_id)
- if not rtstruct_node:
- continue
- print(f"📎 Najden RTSTRUCT: {rtstruct_node.GetName()}")
- # Ustvari nov SegmentationNode
- seg_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode", f"Seg_{rtstruct_node.GetName()}")
- seg_node.SetReferenceImageGeometryParameterFromVolumeNode(ct_volume_node)
- seg_node.SetNodeReferenceID("referenceVolume", ct_volume_node.GetID())
- # Najdi child elemente v SubjectHierarchy (strukture)
- rtstruct_item_id = shNode.GetItemByDataNode(rtstruct_node)
- structure_ids = vtk.vtkIdList()
- shNode.GetItemChildren(rtstruct_item_id, structure_ids)
- segment_count = 0
- for i in range(structure_ids.GetNumberOfIds()):
- structure_item_id = structure_ids.GetId(i)
- name = shNode.GetItemName(structure_item_id)
- associated_node = shNode.GetItemDataNode(structure_item_id)
- if associated_node and associated_node.IsA("vtkMRMLModelNode"):
- print(f" ➕ Dodajam strukturo: {name}")
- slicer.modules.segmentations.logic().ImportModelToSegmentationNode(associated_node, seg_node)
- seg_node.GetSegmentation().GetSegment(seg_node.GetSegmentation().GetNumberOfSegments() - 1).SetName(name)
- segment_count += 1
- # Če ni bilo nič dodano iz SH: poskusi uvoziti modele iz scene
- if segment_count == 0:
- print("⚠️ RTSTRUCT nima struktur v SubjectHierarchy – poskus uvoza vseh modelov iz scene.")
- for model_node in slicer.util.getNodesByClass("vtkMRMLModelNode"):
- if "RTSTRUCT" in model_node.GetName().upper() or model_node.GetName().startswith("Model"):
- print(f" ➕ [fallback] Uvoz modela: {model_node.GetName()}")
- slicer.modules.segmentations.logic().ImportModelToSegmentationNode(model_node, seg_node)
- seg_node.GetSegmentation().GetSegment(seg_node.GetSegmentation().GetNumberOfSegments() - 1).SetName(model_node.GetName())
-
- print(f"📊 Segmentov v {seg_node.GetName()}: {seg_node.GetSegmentation().GetNumberOfSegments()}")
- segmentation_nodes.append(seg_node)
- return segmentation_nodes
- def apply_cumulative_transform_to_segmentation(segmentation_node, matrix):
- transform = vtk.vtkTransform()
- vtk_matrix = vtk.vtkMatrix4x4()
- for i in range(4):
- for j in range(4):
- vtk_matrix.SetElement(i, j, matrix[i, j])
- transform.SetMatrix(vtk_matrix)
- transform_node = slicer.vtkMRMLTransformNode()
- slicer.mrmlScene.AddNode(transform_node)
- transform_node.SetAndObserveTransformToParent(transform)
- segmentation_node.SetAndObserveTransformNodeID(transform_node.GetID())
- slicer.vtkSlicerTransformLogic().hardenTransform(segmentation_node)
- slicer.mrmlScene.RemoveNode(transform_node)
- def convert_all_models_to_segmentation(reference_volume_name: str, prefix: str = "Imported_"):
- """
- Pretvori vse modele (ModelNode) v sceni v enoten vtkMRMLSegmentationNode.
- 📥 VHODI:
- ----------
- reference_volume_name : str
- Ime obstoječega CT volumna (npr. "CT_1"), ki določa geometrijo za segmentacijo.
- Ta volumen mora biti že naložen v sceni.
- prefix : str
- Predpona za ime novega segmentation noda (npr. "Imported_").
- Ime novega noda bo nekaj kot: "Imported_Segmentation".
- 📤 IZHOD:
- ----------
- segmentation_node : vtkMRMLSegmentationNode
- Nov nod, ki vsebuje en segment za vsak najden model v sceni.
- Ta segmentacijski nod je pripravljen za transformacijo in DICOM export (vsebuje BinaryLabelmap).
- """
- import slicer
- # Pridobi referenčni volumen (CT)
- reference_volume = slicer.util.getNode(reference_volume_name)
- # Ustvari nov segmentacijski nod
- segmentation_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLSegmentationNode", prefix + "Segmentation")
- segmentation_node.SetReferenceImageGeometryParameterFromVolumeNode(reference_volume)
- segmentation_node.SetNodeReferenceID("referenceVolume", reference_volume.GetID())
- # Najdi vse modele
- model_nodes = slicer.util.getNodesByClass("vtkMRMLModelNode")
- #print(f"📦 Najdenih modelov: {len(model_nodes)}")
-
- for model_node in model_nodes:
- name = model_node.GetName()
- #print(f"🔍 Model: {name}")
- skip = (
- name.lower().startswith("segmentation")
- or name.lower().startswith("surface")
- or name.lower() in ["red volume slice", "green volume slice", "yellow volume slice"]
- or "rtstruct" in name.lower()
- )
- if skip:
- continue
- # Uvozi model kot segment
- success = slicer.modules.segmentations.logic().ImportModelToSegmentationNode(model_node, segmentation_node)
- if not success:
- #print(f"✅ Model '{name}' uvožen kot segment.")
- print(f"❌ Napaka pri uvozu modela: {name}")
-
- # Ustvari BinaryLabelmap reprezentacijo (nujno za DICOM export)
- created = segmentation_node.GetSegmentation().CreateRepresentation("BinaryLabelmap")
- if created:
- print("✅ BinaryLabelmap reprezentacija uspešno ustvarjena.")
- segmentation_node.GetSegmentation().SetMasterRepresentationName("BinaryLabelmap")
- #else:
- #print("❌ Pretvorba v BinaryLabelmap ni uspela.")
- return segmentation_node
- def apply_cumulative_transform_to_volume(volume_node, matrix):
- transform = vtk.vtkTransform()
- vtk_matrix = vtk.vtkMatrix4x4()
- for i in range(4):
- for j in range(4):
- vtk_matrix.SetElement(i, j, matrix[i, j])
- transform.SetMatrix(vtk_matrix)
- transform_node = slicer.vtkMRMLTransformNode()
- slicer.mrmlScene.AddNode(transform_node)
- transform_node.SetAndObserveTransformToParent(transform)
- volume_node.SetAndObserveTransformNodeID(transform_node.GetID())
- slicer.vtkSlicerTransformLogic().hardenTransform(volume_node)
- slicer.mrmlScene.RemoveNode(transform_node)
- def triangle_similarity(p1, p2):
- """
- Primerja dva trikotnika (vsak definiran s 3 točkami v 3D) na podlagi:
- - razmerij dolžin
- - razlik med koti
- :param p1: seznam treh točk (npr. ct_points)
- :param p2: seznam treh točk (npr. cbct_points)
- :return: dict z razliko dolžin, razliko kotov, povprečno napako
- """
- def side_lengths(pts):
- a = np.linalg.norm(pts[1] - pts[0])
- b = np.linalg.norm(pts[2] - pts[1])
- c = np.linalg.norm(pts[0] - pts[2])
- return np.array([a, b, c])
- def angles(pts):
- # uporabimo kosinusni izrek
- a, b, c = side_lengths(pts)
- angle_A = np.arccos((b**2 + c**2 - a**2) / (2*b*c))
- angle_B = np.arccos((a**2 + c**2 - b**2) / (2*a*c))
- angle_C = np.pi - angle_A - angle_B
- return np.degrees([angle_A, angle_B, angle_C])
- l1 = side_lengths(p1)
- l2 = side_lengths(p2)
- a1 = angles(p1)
- a2 = angles(p2)
- length_diff = np.abs(l1 - l2)
- angle_diff = np.abs(a1 - a2)
- return {
- "side_length_diff_mm": length_diff,
- "angle_diff_deg": angle_diff,
- "mean_length_error_mm": np.mean(length_diff),
- "mean_angle_error_deg": np.mean(angle_diff),
- "TSR": 1 / (1 + np.mean(length_diff) + np.mean(angle_diff) / 10)
- }
- def save_triangle_visualization(ct_pts, cbct_pts, outpath):
- fig = plt.figure(figsize=(10, 8))
- ax = fig.add_subplot(111, projection='3d')
- ct_closed = np.vstack([ct_pts, ct_pts[0]])
- cbct_closed = np.vstack([cbct_pts, cbct_pts[0]])
- ax.plot(ct_closed[:, 0], ct_closed[:, 1], ct_closed[:, 2], 'b-', label='CT trikotnik')
- ax.scatter(ct_pts[:, 0], ct_pts[:, 1], ct_pts[:, 2], c='blue')
- ax.plot(cbct_closed[:, 0], cbct_closed[:, 1], cbct_closed[:, 2], 'r--', label='CBCT trikotnik')
- ax.scatter(cbct_pts[:, 0], cbct_pts[:, 1], cbct_pts[:, 2], c='red')
- ct_centroid = np.mean(ct_pts, axis=0)
- cbct_centroid = np.mean(cbct_pts, axis=0)
- ax.scatter(*ct_centroid, c='blue', marker='x', s=60)
- ax.scatter(*cbct_centroid, c='red', marker='x', s=60)
-
- ax.set_title("Trikotnik markerjev: CT (modro) vs CBCT (rdeče)")
- ax.set_xlabel('X (mm)')
- ax.set_ylabel('Y (mm)')
- ax.set_zlabel('Z (mm)')
- ax.legend()
- ax.view_init(elev=20, azim=30)
- plt.tight_layout()
- try:
- fig.savefig(outpath)
- print(f"🖼 Triangle visualization saved to: {outpath}")
- except Exception as e:
- print(f"❌ Failed to save triangle visualization: {e}")
- finally:
- plt.close(fig)
-
- # Globalni seznami za končno statistiko
- prostate_size_est = []
- ctcbct_distance = []
- table_z_values = {}
- # Pridobimo SubjectHierarchyNode
- shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
-
- studyItems = vtk.vtkIdList()
- shNode.GetItemChildren(shNode.GetSceneItemID(), studyItems)
-
- #slicer.util.delayDisplay(f"[DEBUG] Starting the loops", 1000)
-
- for i in range(studyItems.GetNumberOfIds()):
- study_start_time = time.time()
- start_io = time.time()
- studyItem = studyItems.GetId(i)
- studyName = shNode.GetItemName(studyItem)
- print(f"\nProcessing study: {studyName}")
- # **LOKALNI** seznami, resetirajo se pri vsakem study-ju
- cbct_list = []
- ct_list = []
- volume_points_dict = {}
- CT_offset = 0
- # Get child items of the study item
- volumeItems = vtk.vtkIdList()
- shNode.GetItemChildren(studyItem, volumeItems)
-
- # Iteracija čez vse volumne v posameznem studyju
- for j in range(volumeItems.GetNumberOfIds()):
- intermediateItem = volumeItems.GetId(j)
- finalVolumeItems = vtk.vtkIdList()
- shNode.GetItemChildren(intermediateItem, finalVolumeItems) # Išči globlje!
- for k in range(finalVolumeItems.GetNumberOfIds()):
- volumeItem = finalVolumeItems.GetId(k)
- volumeNode = shNode.GetItemDataNode(volumeItem)
- try:
- dicomUIDs = volumeNode.GetAttribute("DICOM.instanceUIDs")
- except AttributeError:
- print(f"⚠️ Volume node '{volumeNode}' not found or no attribute 'DICOM.instanceUIDs'. Skip.")
- dicomUIDs = None
- continue # Preskoči, če ni veljaven volume
- if not dicomUIDs:
- print("❌ This is an NRRD volume!")
- continue # Preskoči, če ni DICOM volume
-
-
- volumeName = volumeNode.GetName()
- imageItem = shNode.GetItemByDataNode(volumeNode)
- modality = shNode.GetItemAttribute(imageItem, "DICOM.Modality") #deluje!
- #dimensions = volumeNode.GetImageData().GetDimensions()
- #spacing = volumeNode.GetSpacing()
- #print(f"Volume {volumeNode.GetName()} - Dimenzije: {dimensions}, Spacing: {spacing}")
- if modality != "CT":
- print("Not a CT")
- continue # Preskoči, če ni CT
- # Preveri, če volume obstaja v sceni
- if not slicer.mrmlScene.IsNodePresent(volumeNode):
- print(f"Volume {volumeName} not present in the scene.")
- continue
- # Preverimo proizvajalca (DICOM metapodatki)
- manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
- #manufacturer = volumeNode.GetAttribute("DICOM.Manufacturer")
- #manufacturer = slicer.dicomDatabase.fileValue(uid, "0008,0070")
- #print(manufacturer)
-
- # Določimo, ali gre za CBCT ali CT
- if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower():
- cbct_list.append(volumeName)
- scan_type = "CBCT"
- yesCbct = True
- else: # Siemens ali Philips
- ct_list.append(volumeName)
- scan_type = "CT"
- yesCbct = False
- if volumeNode and volumeNode.IsA("vtkMRMLScalarVolumeNode"):
- print(f"✔️ {scan_type} {volumeNode.GetName()} (ID: {volumeItem})")
-
- if not volumeNode or not volumeNode.IsA("vtkMRMLScalarVolumeNode"):
- print("Can't find volumeNode")
- #continue # Preskoči, če ni veljaven volume
-
-
- # Detekcija točk v volumnu
- ustvari_marker = not yesCbct # Ustvari markerje pred poravnavo na mizo
- grouped_points = detect_points_region_growing(volumeName, yesCbct, ustvari_marker, intensity_threshold=3000)
- if grouped_points is None or len(grouped_points) < 3:
- print(f"⚠️ Volume {volumeName} doesn't have enough points for registration. Points: {len(grouped_points)}")
- continue
- if not yesCbct:
-
- # loči koordinate in intenzitete
- coords_only = [pt for pt, _ in grouped_points]
- intensities = [intensity for _, intensity in grouped_points]
- # permutiraj koordinate (npr. zaradi boljšega ujemanja)
- coords_sorted = match_points(coords_only, coords_only)
- # ponovno sestavi pare (točka, intenziteta)
- grouped_points = list(zip(coords_sorted, intensities))
-
- #print(f"Populating volume_points_dict with key ('{scan_type}', '{volumeName}')")
- volume_points_dict[(scan_type, volumeName)] = grouped_points
- #print(volume_points_dict) # Check if the key is correctly added
- # Če imamo oba tipa volumna (CBCT in CT) **znotraj istega studyja**
- end_io = time.time()
- if cbct_list and ct_list:
- fixing = fixing_end = 0
- table1_time = table1end_time = 0
- table2_time = table2end_time = 0
- start_scaling = end_scaling = 0
- start_align = end_align = 0
- start_rotation = end_rotation = 0
- start_translation = end_translation = 0
- start_transform = end_transform = 0
- study_start_time = study_end_time = 0
-
- ct_volume_name = ct_list[0] # Uporabi prvi CT kot referenco
- ct_volume_Node = find_volume_node_by_partial_name(ct_volume_name)
- print(f"\nProcessing CT: {ct_volume_name}")
- yesCbct = False
- if(tablefind):
- table1_time = time.time()
- makemarkerscheck = True
- result = find_table_top_z(ct_volume_name, writefilecheck, makemarkerscheck, yesCbct)
- if result is not None:
- mm_offset, pixel_offset = result
- ct_table_found = True
- #print(f"✔️ Poravnava z višino mize: ΔY = {mm_offset:.2f} mm")
- # Dodaj ΔY k translaciji ali transformaciji po potrebi
- else:
- print("⚠️ Table top not found – continue without correction on Y axis.")
- mm_offset = 0.0 # ali None, če želiš eksplicitno ignorirati
- ct_table_found = False
- CT_offset, CT_spacing = align_cbct_to_ct(ct_volume_Node, "CT", mm_offset)
- table1end_time = time.time()
-
-
- ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]]
- print(f"CT points: {ct_points}")
- if len(ct_points) < 3:
- print(f"CT volume {ct_volume_name} doesn't have enough points for registration. Points: {len(ct_points)}")
- continue
- else:
- # if len(ct_points) == 4:
- # ct_points = remove_lowest_marker(ct_points) #odstrani marker v riti, če obstaja
-
-
- for cbct_volume_name in cbct_list:
- print(f"\nProcessing CBCT Volume: {cbct_volume_name}")
- yesCbct = True
- scan_type = "CBCT" #redundant but here we are
- cbct_volume_node = find_volume_node_by_partial_name(cbct_volume_name)
-
- key = (studyName, cbct_volume_name)
- if key not in cumulative_matrices:
- cumulative_matrices[key] = np.eye(4)
-
- fixing = time.time()
- if(tablefind):
- table2_time = time.time()
- makemarkerscheck = False # Ustvari CBCT miza markerje pred poravnavo
- if(ct_table_found):
- result = find_table_top_z(cbct_volume_name, writefilecheck, makemarkerscheck, yesCbct) #!!!!!!!!!!!!!???????????? ct_volume_name
- if result is not None:
- mm_offset, pixel_offset = result
- print(f"CT offset: {CT_offset}, cbct offset: {mm_offset}")
-
- #ne rabimo več CT_offset, le še cbct offset.
- skupni_offset = align_cbct_to_ct(cbct_volume_node, scan_type, mm_offset, CT_offset, CT_spacing) #poravna CBCT in sporoči skupni offset
-
- table_shift_matrix = np.eye(4)
- table_shift_matrix[1, 3] = skupni_offset # Premik po Y
- # Pomnoži obstoječo kumulativno matriko
- key = (studyName, cbct_volume_name)
- if key not in cumulative_matrices:
- cumulative_matrices[key] = np.eye(4)
- cumulative_matrices[key] = np.dot(cumulative_matrices[key], table_shift_matrix)
-
- else:
- print("⚠️ Table top not found – continue without correction on Y axis.")
- mm_offset = 0.0
- table2end_time = time.time()
-
- cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]] #zastareli podatki
- cbct_points_array = np.array(cbct_points) # Pretvorba v numpy array
-
- if len(cbct_points) != len(ct_points):
- if(len(cbct_points) + 1 == len(ct_points)):
- ct_points = remove_lowest_marker(ct_points) #odstrani marker v riti, če obstaja
- else:
- print(f"Neujemajoče število točk! CBCT: {len(cbct_points)}, CT: {len(ct_points)}")
- continue
-
- # print_orientation(ct_volume_name)
- # print_orientation(cbct_volume_name)
-
- #for i, (cb, ct) in enumerate(zip(cbct_points, ct_points)):
- # print(f"Pair {i}: CBCT {cb}, CT {ct}, diff: {np.linalg.norm(cb - ct):.2f}")
-
-
-
- ustvari_marker = False # Ustvari markerje
- cbct_points = [centroid for centroid, _ in detect_points_region_growing(cbct_volume_name, yesCbct, ustvari_marker, intensity_threshold=3000)]
- #cbct_points = detect_points_region_growing(cbct_volume_name, yesCbct, intensity_threshold=3000)
- #cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]] #zastareli podatki
-
-
- if len(cbct_points) < 3:
- print(f"CBCT Volume '{cbct_volume_name}' doesn't have enough points for registration. Points: {len(cbct_points)}")
- continue
-
- cbct_spacing = cbct_volume_node.GetSpacing()
- ct_spacing = ct_volume_Node.GetSpacing()
- cbct_points = rescale_points_to_match_spacing(cbct_points, cbct_spacing, ct_spacing)
-
- #Sortiramo točke po X/Y/Z da se izognemo težavam pri poravnavi
- cbct_points = match_points(cbct_points, ct_points)
- fixing_end = time.time()
- #visualize_point_matches_in_slicer(cbct_points, ct_points, studyName) #poveže pare markerjev
-
- if writefilecheck:
- # Shranjevanje razdalj
- distances_ct_cbct = []
- distances_internal = {"A-B": [], "B-C": [], "C-A": []}
- cbct_volume_node = find_volume_node_by_partial_name(cbct_volume_name)
-
- # Sortiramo točke po Z-koordinati (ali X/Y, če raje uporabljaš drugo os)
- cbct_points_sorted = cbct_points_array[np.argsort(cbct_points_array[:, 2])]
-
- # Razdalje med CT in CBCT (SORTIRANE točke!)
- if cbct_points_sorted.shape[0] != len(ct_points):
- print(f"⚠️ Število točk CBCT ({cbct_points_sorted.shape[0]}) != CT ({len(ct_points)}), preskakujem izračun.")
- else:
- d_ct_cbct = np.linalg.norm(cbct_points_sorted - ct_points, axis=1)
- distances_ct_cbct.append(d_ct_cbct)
-
- # Razdalje med točkami znotraj SORTIRANIH cbct_points
- d_ab = np.linalg.norm(cbct_points_sorted[0] - cbct_points_sorted[1])
- d_bc = np.linalg.norm(cbct_points_sorted[1] - cbct_points_sorted[2])
- d_ca = np.linalg.norm(cbct_points_sorted[2] - cbct_points_sorted[0])
- # Sortiramo razdalje po velikosti, da so vedno v enakem vrstnem redu
- sorted_distances = sorted([d_ab, d_bc, d_ca])
- distances_internal["A-B"].append(sorted_distances[0])
- distances_internal["B-C"].append(sorted_distances[1])
- distances_internal["C-A"].append(sorted_distances[2])
-
- # Dodamo ime študije za v statistiko
- studyName = shNode.GetItemName(studyItem)
-
- # **Shrani razdalje v globalne sezname**
- prostate_size_est.append({"Study": studyName, "Distances": sorted_distances})
- ctcbct_distance.append({"Study": studyName, "Distances": list(distances_ct_cbct[-1])}) # Pretvorimo v seznam
- # Izberi metodo glede na uporabnikov izbor
- chosen_rotation_matrix = np.eye(3)
- chosen_translation_vector = np.zeros(3)
- #print("Markerji pred transformacijo:", cbct_points, ct_points)
- start_scaling = time.time()
- scaling_factors = None
- if applyScaling:
- scaling_factors = compute_scaling_stddev(cbct_points, ct_points)
- #print("Scaling factors: ", scaling_factors)
- cbct_points = compute_scaling(cbct_points, scaling_factors)
-
- end_scaling = time.time()
- start_align = time.time()
- initial_error = np.mean(np.linalg.norm(np.array(cbct_points) - np.array(ct_points), axis=1))
- if initial_error > 30:
- #print("⚠️ Initial distance too large, applying centroid prealignment.")
- cbct_points, transvector = prealign_by_centroid(cbct_points, ct_points)
- else:
- transvector = np.zeros(3)
- end_align = time.time()
-
- start_rotation = time.time()
- if applyRotation:
- if selectedMethod == "Kabsch":
- chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
- elif selectedMethod == "Horn":
- chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
- elif selectedMethod == "Iterative Closest Point (Kabsch)":
- _, chosen_rotation_matrix, _ = icp_algorithm(cbct_points, ct_points)
- #print("Rotation Matrix:\n", chosen_rotation_matrix)
- end_rotation = time.time()
-
- start_translation = time.time()
- fine_shift = np.zeros(3) # Inicializiraj fine premike
- if applyTranslation:
- chosen_translation_vector, cbct_points_transformed, method_used = choose_best_translation(
- cbct_points, ct_points, chosen_rotation_matrix)
-
- # Sistematična razlika (signed shift)
- rotated_cbct = np.dot(cbct_points, chosen_rotation_matrix.T)
- translated_cbct = rotated_cbct + chosen_translation_vector
- delta_y_list = [ct[1] - cbct[1] for ct, cbct in zip(ct_points, translated_cbct)]
- mean_delta_y = np.mean(delta_y_list)
- # Uporabi sistematični shift za dodatno poravnavo v y-osi
- fine_shift = np.array([0.0, mean_delta_y, 0.0]) # samo Y-os
- cbct_points_transformed += fine_shift
- end_translation = time.time()
- start_transform = time.time()
- # ✅ Kombinirana transformacija
- total_translation = chosen_translation_vector + fine_shift
- chosen_translation_vector = total_translation
- vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector, studyName, cbct_volume_name, scaling_factors)
-
-
-
-
-
- combined_matrix = np.eye(4)
- # 1. Rotacija
- if chosen_rotation_matrix is not None:
- combined_matrix[:3, :3] = chosen_rotation_matrix
- # 2. Skaliranje
- if scaling_factors is not None:
- # Pomnoži rotacijo s skalirnim faktorjem po vsaki osi
- scaled_rotation = combined_matrix[:3, :3] * scaling_factors # broadcasting vsake vrstice
- combined_matrix[:3, :3] = scaled_rotation
- # 3. Translacija
- if chosen_translation_vector is not None:
- combined_matrix[:3, 3] = chosen_translation_vector + transvector # združena translacija
-
- #preverjanje determinante
- rot_part = combined_matrix[:3, :3]
- det = np.linalg.det(rot_part)
- if not np.isclose(det, 1.0, atol=0.01):
- print(f"⚠️ Neortogonalna rotacija! Determinanta: {det}")
-
- cumulative_matrices[(studyName, cbct_volume_name)] = np.dot(cumulative_matrices[(studyName, cbct_volume_name)], combined_matrix)
- # 🔄 Pripni transformacijo
- imeTransformNoda = cbct_volume_name + " Transform"
- transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
- transform_node.SetAndObserveTransformToParent(vtk_transform)
- cbct_volume_node = find_volume_node_by_partial_name(cbct_volume_name)
- cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID())
- # 🔨 Uporabi (ali shrani transformacijo kasneje)
- slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node)
- slicer.mrmlScene.RemoveNode(transform_node)
-
- end_transform = time.time()
- # 📍 Detekcija markerjev po transformaciji
- ustvari_marker = False
- cbct_points = [centroid for centroid, _ in detect_points_region_growing(cbct_volume_name, yesCbct, ustvari_marker, intensity_threshold=3000)]
- #print("Markerji po transformaciji:\n", cbct_points, ct_points)
- cbct_points = match_points(cbct_points, ct_points)
- #popravek v x osi
- delta_x_list = [ct[0] - cbct[0] for ct, cbct in zip(ct_points, cbct_points)]
- mean_delta_x = np.mean(delta_x_list)
- #popravek v y osi
- delta_y_list = [ct[1] - cbct[1] for ct, cbct in zip(ct_points, cbct_points)]
- mean_delta_y = np.mean(delta_y_list)
- #popravek v z osi
- delta_z_list = [ct[2] - cbct[2] for ct, cbct in zip(ct_points, cbct_points)]
- mean_delta_z = np.mean(delta_z_list)
- # Uporabi sistematični shift za dodatno poravnavo
- fine_shift = np.array([mean_delta_x, mean_delta_y, mean_delta_z])
- #cbct_points_transformed += fine_shift
-
- if fine_shift is not None:
- shift_matrix = np.eye(4)
- shift_matrix[:3, 3] = fine_shift
- cumulative_matrices[(studyName, cbct_volume_name)] = np.dot(cumulative_matrices[(studyName, cbct_volume_name)], shift_matrix)
-
-
- chosen_rotation_matrix = np.eye(3) #tokrat brez rotacije
-
- #### TEST ROTACIJA ########
- angle_deg = 0
- angle_rad = np.deg2rad(angle_deg)
- chosen_rotation_matrix = np.array([
- [np.cos(angle_rad), -np.sin(angle_rad), 0],
- [np.sin(angle_rad), np.cos(angle_rad), 0],
- [0, 0, 1]
- ])
- ###KONEC TESTA###
-
- vtk_transform = create_vtk_transform(chosen_rotation_matrix, fine_shift, studyName, cbct_volume_name) #Tukaj se tudi izpiše transformacijska matrika
- # 🔄 Pripni transformacijo
- imeTransformNoda = cbct_volume_name + " Transform"
- transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
- transform_node.SetAndObserveTransformToParent(vtk_transform)
- cbct_volume_node = find_volume_node_by_partial_name(cbct_volume_name)
- cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID())
- # 🔨 Uporabi (ali shrani transformacijo kasneje)
- slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node)
- slicer.mrmlScene.RemoveNode(transform_node)
-
- table_shift_matrix_ct = np.eye(4)
- table_shift_matrix_ct[1, 3] = CT_offset # ali skupni_offset, če je potreben simetričen premik
-
- cumulative_matrices[(studyName, cbct_volume_name)] = np.dot(
- table_shift_matrix,
- cumulative_matrices[(studyName, cbct_volume_name)]
- )
-
- #ustvari_marker = True
- cbct_points = [centroid for centroid, _ in detect_points_region_growing(cbct_volume_name, yesCbct, applymarkers, intensity_threshold=3000)]
- print(f"Fine correction shifts: ΔX={fine_shift[0]:.2f} mm, ΔY={fine_shift[1]:.2f} mm, ΔZ={fine_shift[2]:.2f} mm")
- #shrani transformacijsko matriko v datoteko
- save_transform_matrix(cumulative_matrices[(studyName, cbct_volume_name)], studyName, cbct_volume_name)
-
- if save_as_dicom:
- # Apply transform to CT
- logging.info(f"[{studyName}] Start applying transform to CT volume.")
- slicer.util.delayDisplay(f"[DEBUG] Start transform on CT", 1000)
- apply_cumulative_transform_to_volume(ct_volume_Node, cumulative_matrices[(studyName, cbct_volume_name)])
-
- # Convert RTSTRUCT to SegmentationNode if needed
- logging.info(f"[{studyName}] Getting segmentation nodes from RTSTRUCT.")
- #slicer.util.delayDisplay(f"[DEBUG] Start segmentation conversion", 1000)
- #seg_nodes = convert_rtstruct_to_segmentation_nodes(ct_volume_Node)
- seg_node = convert_all_models_to_segmentation(ct_volume_name, prefix="Imported_")
- #new_seg_node = slicer.util.getNode(new_seg_name)
- apply_cumulative_transform_to_segmentation(seg_node, cumulative_matrices[(studyName, cbct_volume_name)])
- plugin = DicomRtImportExportPlugin.DicomRtImportExportPluginClass()
- shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
- ct_itemID = shNode.GetItemByDataNode(ct_volume_Node)
- seg_itemID = shNode.GetItemByDataNode(seg_node)
-
-
- cbct_item = shNode.GetItemByDataNode(cbct_volume_node)
- cbct_date = shNode.GetItemAttribute(cbct_item, "DICOM.SeriesDate") or "unknownDate"
- #cbct_date = cbct_volume_node.GetAttribute("DICOM.AcquisitionDate") or "unknownDate"
- results_base = os.path.join(os.path.dirname(__file__), "Rezultati")
- study_folder = studyName.replace('^', '_')
- study_dir = os.path.join(results_base, study_folder)
- os.makedirs(study_dir, exist_ok=True)
- export_dir = os.path.join(study_dir, f"{cbct_date}_DICOM")
- os.makedirs(export_dir, exist_ok=True)
-
- exportables = []
- exportables += plugin.examineForExport(ct_itemID)
- exportables += plugin.examineForExport(seg_itemID)
- for exp in exportables:
- # Kopiraj podatke iz volumetričnega noda v exportable
- if ct_volume_Node.GetAttribute("DICOM.PatientName"):
- exp.setTag("0010,0010", ct_volume_Node.GetAttribute("DICOM.PatientName")) # PatientName
- if ct_volume_Node.GetAttribute("DICOM.PatientID"):
- exp.setTag("0010,0020", ct_volume_Node.GetAttribute("DICOM.PatientID")) # PatientID
- if ct_volume_Node.GetAttribute("DICOM.StudyInstanceUID"):
- exp.setTag("0020,000D", ct_volume_Node.GetAttribute("DICOM.StudyInstanceUID")) # StudyInstanceUID
- exp.directory = export_dir
- print(f"[{studyName}] ✅ Export successful")
- plugin.export(exportables)
-
- # 📏 Izračun napake
- errors = [np.linalg.norm(cbct - ct) for cbct, ct in zip(cbct_points, ct_points)]
- mean_error = np.mean(errors)
- print("Total Individual errors:", errors)
- print("Average error: {:.2f} mm".format(mean_error))
-
- for i, (cbct, ct) in enumerate(zip(cbct_points, ct_points)):
- diff = np.array(cbct) - np.array(ct)
- print(f"Specific marker errors {i+1}: ΔX={diff[0]:.2f} mm, ΔY={diff[1]:.2f} mm, ΔZ={diff[2]:.2f} mm")
-
- ct_pts = np.array(ct_points)
- cbct_pts = np.array(cbct_points)
- if len(ct_pts) == 3 and len(cbct_pts) == 3:
- sim = triangle_similarity(ct_pts, cbct_pts)
- print("\n📐 Triangle similarity analysis:")
- print(f"Side length differences (mm): {sim['side_length_diff_mm']}")
- print(f"Angle differences (deg): {sim['angle_diff_deg']}")
- print(f"Mean length error: {sim['mean_length_error_mm']:.2f} mm")
- print(f"Mean angle error: {sim['mean_angle_error_deg']:.2f}°")
- print(f"Triangle Similarity Ratio (TSR): {sim['TSR']:.3f}")
- else:
- print("⚠️ Za primerjavo trikotnikov potrebne točno 3 točke.")
-
- if writefilecheck:
-
- errorsfile = os.path.join(study_dir, f"{cbct_date}_errors.csv")
- with open(errorsfile, mode='a', newline='') as file:
- writer = csv.writer(file)
- # Glava za študijo
- writer.writerow(["Study", studyName])
- writer.writerow(["Total Individual Errors (mm)"])
-
- for error in errors:
- writer.writerow(["", f"{error:.2f}"])
- writer.writerow(["Average Error (mm)", f"{mean_error:.2f}"])
- # Specifične napake markerjev
- writer.writerow(["Specific Marker Errors"])
- writer.writerow(["Marker", "ΔX (mm)", "ΔY (mm)", "ΔZ (mm)"])
- for i, (cbct, ct) in enumerate(zip(cbct_points, ct_points)):
- diff = np.array(cbct) - np.array(ct)
- writer.writerow([f"Marker {i+1}", f"{diff[0]:.2f}", f"{diff[1]:.2f}", f"{diff[2]:.2f}"])
- if len(cbct_points) == 3 and len(ct_points) == 3:
- writer.writerow([])
- writer.writerow(["Triangle Similarity"])
- writer.writerow(["Side Length Diff (mm)", *[f"{v:.2f}" for v in sim["side_length_diff_mm"]]])
- writer.writerow(["Angle Diff (deg)", *[f"{v:.2f}" for v in sim["angle_diff_deg"]]])
- writer.writerow(["Mean Length Error (mm)", f"{sim['mean_length_error_mm']:.2f}"])
- writer.writerow(["Mean Angle Error (deg)", f"{sim['mean_angle_error_deg']:.2f}"])
- writer.writerow(["Triangle Similarity Ratio (TSR)", f"{sim['TSR']:.3f}"])
- writer.writerow([])
-
-
- graphs_dir = os.path.join(results_base, study_folder)
- os.makedirs(graphs_dir, exist_ok=True)
- pngfile = os.path.join(graphs_dir, f"{cbct_date}_trikotnika.png")
- save_triangle_visualization(np.array(ct_points), np.array(cbct_points), pngfile)
-
- #print("Prostate size file written at ", prostate_size_file)
-
-
-
-
- else:
- print(f"Study {studyItem} doesn't have any appropriate CT or CBCT volumes.")
- continue
-
- study_end_time = time.time()
- timing_data = {
- "IO": end_io - start_io,
- "Fixing": fixing_end - fixing,
- "Table": ((table1end_time - table1_time)+(table2end_time - table2_time)) if tablefind else 0,
- "Scaling": end_scaling - start_scaling,
- "CentroidAlign": end_align - start_align,
- "Rotation": end_rotation - start_rotation,
- "Translation": end_translation - start_translation,
- "Transform": end_transform - start_transform,
- "Total": study_end_time - study_start_time}
- update_timing_csv(timing_data, studyName)
- print(f"Timing data for {studyName}: {timing_data}")
-
- # Izpis globalne statistike
-
- start_save = time.time()
- if writefilecheck:
- #print("Distances between CT & CBCT markers: ", ctcbct_distance)
- #print("Distances between pairs of markers for each volume: ", prostate_size_est)
-
- # Define file paths
- prostate_size_file = os.path.join(os.path.dirname(__file__), "prostate_size.csv")
- ctcbct_distance_file = os.path.join(os.path.dirname(__file__), "ct_cbct_distance.csv")
- # Write prostate size data
- with open(prostate_size_file, mode='w', newline='') as file:
- writer = csv.writer(file)
- writer.writerow(["Prostate Size"])
- for size in prostate_size_est:
- writer.writerow([size])
- #print("Prostate size file written at ", prostate_size_file)
- # Write CT-CBCT distance data
- with open(ctcbct_distance_file, mode='w', newline='') as file:
- writer = csv.writer(file)
- writer.writerow(["CT-CBCT Distance"])
- for distance in ctcbct_distance:
- writer.writerow([distance])
- #print("CT-CBCT distance file written at ", ctcbct_distance_file)
- end_save = time.time()
- print(f"Saving time: {end_save - start_save:.2f} seconds")
- end_time = time.time()
- # Calculate and print elapsed time
- elapsed_time = end_time - start_time
- # Convert to minutes and seconds
- minutes = int(elapsed_time // 60)
- seconds = elapsed_time % 60
- print(f"Execution time: {minutes} minutes and {seconds:.6f} seconds")
|