123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- % PHANTOM3D Three-dimensional analogue of MATLAB Shepp-Logan phantom
- % P = PHANTOM3D(DEF,N) generates a 3D head phantom that can
- % be used to test 3-D reconstruction algorithms.
- %
- % DEF is a string that specifies the type of head phantom to generate.
- % Valid values are:
- %
- % 'Shepp-Logan' A test image used widely by researchers in
- % tomography
- % 'Modified Shepp-Logan' (default) A variant of the Shepp-Logan phantom
- % in which the contrast is improved for better
- % visual perception.
- %
- % N is a scalar that specifies the grid size of P.
- % If you omit the argument, N defaults to 64.
- %
- % P = PHANTOM3D(E,N) generates a user-defined phantom, where each row
- % of the matrix E specifies an ellipsoid in the image. E has ten columns,
- % with each column containing a different parameter for the ellipsoids:
- %
- % Column 1: A the additive intensity value of the ellipsoid
- % Column 2: a the length of the x semi-axis of the ellipsoid
- % Column 3: b the length of the y semi-axis of the ellipsoid
- % Column 4: c the length of the z semi-axis of the ellipsoid
- % Column 5: x0 the x-coordinate of the center of the ellipsoid
- % Column 6: y0 the y-coordinate of the center of the ellipsoid
- % Column 7: z0 the z-coordinate of the center of the ellipsoid
- % Column 8: phi phi Euler angle (in degrees) (rotation about z-axis)
- % Column 9: theta theta Euler angle (in degrees) (rotation about x-axis)
- % Column 10: psi psi Euler angle (in degrees) (rotation about z-axis)
- %
- % For purposes of generating the phantom, the domains for the x-, y-, and
- % z-axes span [-1,1]. Columns 2 through 7 must be specified in terms
- % of this range.
- %
- % [P,E] = PHANTOM3D(...) returns the matrix E used to generate the phantom.
- %
- % Class Support
- % -------------
- % All inputs must be of class double. All outputs are of class double.
- %
- % Remarks
- % -------
- % For any given voxel in the output image, the voxel's value is equal to the
- % sum of the additive intensity values of all ellipsoids that the voxel is a
- % part of. If a voxel is not part of any ellipsoid, its value is 0.
- %
- % The additive intensity value A for an ellipsoid can be positive or negative;
- % if it is negative, the ellipsoid will be darker than the surrounding pixels.
- % Note that, depending on the values of A, some voxels may have values outside
- % the range [0,1].
- %
- % Example
- % -------
- % ph = phantom3d(128);
- % figure, imshow(squeeze(ph(64,:,:)))
- %
- % Copyright 2005 Matthias Christian Schabel (matthias @ stanfordalumni . org)
- % University of Utah Department of Radiology
- % Utah Center for Advanced Imaging Research
- % 729 Arapeen Drive
- % Salt Lake City, UT 84108-1218
- %
- % This code is released under the Gnu Public License (GPL). For more information,
- % see : http://www.gnu.org/copyleft/gpl.html
- %
- % Portions of this code are based on phantom.m, copyrighted by the Mathworks
- %
- % =========================================================================
- %% Phantom Code
- function [p,ellipse]=phantom3d(varargin)
- [ellipse,n] = parse_inputs(varargin{:});
- p = ones([n n n]) .* 0.0357776; % Attenuation coefficient of PMMA (1/mm)
- %p = zeros([n n n]);
- rng = ((0:n-1)-(n-1)/2) / ((n-1)/2);
- [x,y,z] = meshgrid(rng,rng,rng); % Coordinate system of a phantom; starting point at the phantom's centre
- coord = [flatten(x); flatten(y); flatten(z)];
- p = flatten(p);
- for k = 1:size(ellipse,1)
- A = ellipse(k,1); % Amplitude change for this ellipsoid
- asq = ellipse(k,2)^2; % a^2
- bsq = ellipse(k,3)^2; % b^2
- csq = ellipse(k,4)^2; % c^2
- x0 = ellipse(k,5); % x offset
- y0 = ellipse(k,6); % y offset
- z0 = ellipse(k,7); % z offset
- phi = ellipse(k,8)*pi/180; % first Euler angle in radians
- theta = ellipse(k,9)*pi/180; % second Euler angle in radians
- psi = ellipse(k,10)*pi/180; % third Euler angle in radians
-
- cphi = cos(phi);
- sphi = sin(phi);
- ctheta = cos(theta);
- stheta = sin(theta);
- cpsi = cos(psi);
- spsi = sin(psi);
-
- % Euler rotation matrix
- alpha = [cpsi*cphi-ctheta*sphi*spsi cpsi*sphi+ctheta*cphi*spsi spsi*stheta;
- -spsi*cphi-ctheta*sphi*cpsi -spsi*sphi+ctheta*cphi*cpsi cpsi*stheta;
- stheta*sphi -stheta*cphi ctheta];
-
- % Rotated ellipsoid coordinates
- coordp = alpha*coord;
-
- idx = find((coordp(1,:)-x0).^2./asq + (coordp(2,:)-y0).^2./bsq + (coordp(3,:)-z0).^2./csq <= 1);
- p(idx) = p(idx) + A;
- end
- p = reshape(p,[n n n]);
- return;
- function out = flatten(in)
- out = reshape(in,[1 prod(size(in))]);
- return;
- function [e,n] = parse_inputs(varargin)
- % e is the m-by-10 array which defines ellipsoids
- % n is the size of the phantom brain image
- n = 128; % The default size
- e = [];
- defaults = {'shepp-logan', 'modified shepp-logan', 'yu-ye-wang', 'aleks'};
- for i=1:nargin
- if ischar(varargin{i}) % Look for a default phantom
- def = lower(varargin{i});
- idx = strmatch(def, defaults);
- if isempty(idx)
- eid = sprintf('Images:%s:unknownPhantom',mfilename);
- msg = 'Unknown default phantom selected.';
- error(eid,'%s',msg);
- end
- switch defaults{idx}
- case 'shepp-logan'
- e = shepp_logan;
- case 'modified shepp-logan'
- e = modified_shepp_logan;
- case 'yu-ye-wang'
- e = yu_ye_wang;
- case 'aleks'
- e = aleks;
- end
- elseif numel(varargin{i})==1
- n = varargin{i}; % a scalar is the image size
-
- elseif ndims(varargin{i})==2 && size(varargin{i},2)==10
- e = varargin{i}; % user specified phantom
-
- else
- eid = sprintf('Images:%s:invalidInputArgs',mfilename);
- msg = 'Invalid input arguments.';
- error(eid,'%s',msg);
- end
- end
- % ellipse is not yet defined
- if isempty(e)
- e = modified_shepp_logan;
- end
- return;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Default head phantoms: %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- function e = shepp_logan
- e = modified_shepp_logan;
- e(:,1) = [1 -.98 -.02 -.02 .01 .01 .01 .01 .01 .01];
- return;
- function e = aleks
- e = readmatrix("Mikrokalcinacije.txt")
- return;
-
- function e = modified_shepp_logan
- %
- % This head phantom is the same as the Shepp-Logan except
- % the intensities are changed to yield higher contrast in
- % the image. Taken from Toft, 199-200.
- %
- % A a b c x0 y0 z0 phi theta psi
- % -----------------------------------------------------------------
- e = [ 1 .6900 .920 .810 0 0 0 0 0 0
- -.8 .6624 .874 .780 0 -.0184 0 0 0 0
- -.2 .1100 .310 .220 .22 0 0 -18 0 10
- -.2 .1600 .410 .280 -.22 0 0 18 0 10
- .1 .2100 .250 .410 0 .35 -.15 0 0 0
- .1 .0460 .046 .050 0 .1 .25 0 0 0
- .1 .0460 .046 .050 0 -.1 .25 0 0 0
- .1 .0460 .023 .050 -.08 -.605 0 0 0 0
- .1 .0230 .023 .020 0 -.606 0 0 0 0
- .1 .0230 .046 .020 .06 -.605 0 0 0 0 ];
-
- return;
-
- function e = yu_ye_wang
- %
- % Yu H, Ye Y, Wang G, Katsevich-Type Algorithms for Variable Radius Spiral Cone-Beam CT
- %
- % A a b c x0 y0 z0 phi theta psi
- % -----------------------------------------------------------------
- e = [ 1 .6900 .920 .900 0 0 0 0 0 0
- -.8 .6624 .874 .880 0 0 0 0 0 0
- -.2 .4100 .160 .210 -.22 0 -.25 108 0 0
- -.2 .3100 .110 .220 .22 0 -.25 72 0 0
- .2 .2100 .250 .500 0 .35 -.25 0 0 0
- .2 .0460 .046 .046 0 .1 -.25 0 0 0
- .1 .0460 .023 .020 -.08 -.65 -.25 0 0 0
- .1 .0460 .023 .020 .06 -.65 -.25 90 0 0
- .2 .0560 .040 .100 .06 -.105 .625 90 0 0
- -.2 .0560 .056 .100 0 .100 .625 0 0 0 ];
-
- return;
|