ソースを参照

Add GPR example using logartihm

Blaz Leban 2 年 前
コミット
923c98e63e

+ 96 - 0
1-naloga-razpadi-higgsovega-bozona/fitting_example_GPR-logartihm.py

@@ -0,0 +1,96 @@
+import numpy as np
+from sklearn.gaussian_process import GaussianProcessRegressor
+# Different kernels available in sklearn:
+from sklearn.gaussian_process.kernels import RBF, ConstantKernel, Matern, WhiteKernel, ExpSineSquared, RationalQuadratic
+from matplotlib import pyplot as plt
+plt.rcParams.update({
+  'axes.labelsize': 16,
+  'xtick.labelsize': 14,
+  'ytick.labelsize': 14
+})
+# Set random seed for same results
+np.random.seed(12345)
+
+# Load data
+inFileName = 'DATA/original_histograms/mass_mm_higgs_Background.npz'
+with np.load(inFileName) as data:
+    bin_centers = data['bin_centers']
+    bin_values = np.log(data['bin_values'])
+    bin_errors = data['bin_errors'] / data['bin_values'] # How does the error scale when taking f(x) = ln(x)?
+
+# Mask
+signal_region = (119, 131)
+mask = (bin_centers < signal_region[0]) | (bin_centers > signal_region[1])
+bin_centers_masked = bin_centers[mask]
+bin_values_masked = bin_values[mask]
+bin_errors_masked = bin_errors[mask]
+
+# Set hyper-parameter bounds for ConstantKernel
+nEvts = np.max(bin_values)
+const0 = 1.
+const_low = 1e-1
+const_hi = 1e3
+
+# Set hyper-parameter bounds for RBF kernel
+RBF0 = 1.
+RBF_low = 1e-1
+RBF_high = 1e2
+
+# A) Define kernel: ConstantKernel * RBF:
+kernel_RBF = ConstantKernel(const0, constant_value_bounds=(const_low, const_hi)) * RBF(RBF0, length_scale_bounds=(RBF_low, RBF_high))
+
+# B) Define kernel: ConstantKernel * Matern:
+kernel_Matern = ConstantKernel(const0, constant_value_bounds=(const_low, const_hi)) * Matern(RBF0, length_scale_bounds=(RBF_low, RBF_high), nu=1.5)
+
+# Transform x data into 2d vector!
+X = np.atleast_2d(bin_centers_masked).T  # true datapoints
+X_to_predict = np.atleast_2d(np.linspace(110, 160, 1000)).T  # what to predict
+y = bin_values_masked
+
+# Initialize Gaussian Process Regressor: !!! alpha = bin_errors, 2*bin_errors or bin_errors**2? Your task to figure out!!!
+gp = GaussianProcessRegressor(kernel=kernel_RBF, n_restarts_optimizer=1, alpha=bin_errors_masked**2)
+
+# Fit on X with values y
+gp.fit(X, y)
+print('Final kernel combination:\n', gp.kernel_)
+
+# Predict
+y_pred, sigma = gp.predict(X_to_predict, return_std=True)
+y_pred_sparse, sigma_sparse = gp.predict(np.atleast_2d(bin_centers).T, return_std=True)
+
+fig, axes = plt.subplot_mosaic([['main'],['main'],['main'],['ratio']], sharex=True, figsize=(8, 8))
+
+# Main pad
+axes['main'].set_title('Example GPR with RBF kernel', fontsize=20, fontweight='bold')
+axes['main'].fill_between(X_to_predict.ravel(), y_pred - sigma, y_pred + sigma)
+axes['main'].scatter(bin_centers_masked, bin_values_masked, color='r', linewidth=0.5, marker='o', s=25, label='Data')
+axes['main'].scatter(bin_centers[~mask], bin_values[~mask], color='g', marker='+', s=100, label='Blinded data (not used in the fit)')
+axes['main'].plot(X_to_predict, y_pred, color='k', label='GPR Prediction')
+axes['main'].set_ylabel('ln(events/bin)', fontsize=16)
+axes['main'].set_ylim((8, 12))
+axes['main'].legend(fontsize=16)
+
+# Ratio pad
+axes['ratio'].errorbar(bin_centers, bin_values/y_pred_sparse, yerr=sigma_sparse, color='k', linewidth=0., elinewidth=0.5, marker='.')
+axes['ratio'].axhline(1, c='k', lw=1, alpha=0.7)
+axes['ratio'].set_xlabel(r'$m_{\mu\mu}$ [GeV]', fontsize=16)
+axes['ratio'].set_ylabel('Data/Pred.', fontsize=16)
+# Make ratio plot labels symmetric around 1.
+max = np.max(np.abs(axes['ratio'].get_yticks() - 1.)) / 1.5
+axes['ratio'].set_ylim((1. - max, 1. + max))
+axes['ratio'].grid()
+
+# Make an inner plot
+axes['main'].plot([113, 119], [9.9, 10.9], 'k--')
+axes['main'].plot([138, 131], [9.9, 10.3], 'k--')
+ax_inner = fig.add_axes([0.2125, 0.3625, 0.4, 0.25])
+ax_inner.set_title('zoom-in', fontsize=20)
+ax_inner.scatter(bin_centers[~mask], bin_values[~mask], color='g', marker='+', s=100)
+ax_inner.plot(X_to_predict, y_pred, color='k')
+ax_inner.set_xlim(signal_region)
+ax_inner.set_ylim((10.3, 11))
+ax_inner.grid()
+
+plt.tight_layout()
+plt.show()
+plt.savefig('GPR_simple.pdf')