import json import torch from model import ModelCT from datareader import DataReader from torch.utils.data import DataLoader from matplotlib import pyplot as plt import torch.nn.functional as F import numpy as np import os # Razred za shranjevanje konvolucij class SaveOutput: def __init__(self): self.outputs = [] def __call__(self, module, module_in, module_out): self.outputs.append(module_out) def clear(self): self.outputs = [] if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Nalozimo testne podatke main_path_to_data = "C:/Users/Klanecek/Desktop/processed" model_folder = "trained_models/testrun123_v2" with open (os.path.join(main_path_to_data, "test_info.json")) as fp: test_info = json.load(fp) # Nalozimo model, ki ga damo v eval mode model = ModelCT() model.to(device) model.load_state_dict(torch.load(os.path.join(model_folder, "trained_model_weights.pth"))) model.eval() # Inicializiramo razred v SO in registriramo kavlje v nasem modelu SO = SaveOutput() for layer in model.modules(): if isinstance(layer, torch.nn.modules.conv.Conv2d): handle = layer.register_forward_hook(SO) # Naredimo test_generator z batch_size=1 test_datareader = DataReader(main_path_to_data, test_info) test_generator = DataLoader(test_datareader, batch_size=1, shuffle=False, pin_memory=True, num_workers=2) # Vzamemo prvi testni primer npr. item_test = next(iter(test_generator)) # Propagiramo prvi testni primer skozi mrezo, razred SaveOutput si shrani vse konvolucije input_image = item_test[0].to(device) _ = model(input_image) # Izberemo katero konvolucijo bi radi pogledali (color_channel bo vedno 0) color_channel = 0 # indeks barvnega kanala (pri nas le 1 kanal) idx_layer = 5 # indeks konvolucijske plasti (Conv2d) - (pri nas 21) idx_convolution = 17 # indeks konvolucije na dani plasti (max odvisen od plasti) # Vizualiziramo convolution_0_5_17 = SO.outputs[idx_layer][color_channel][idx_convolution][:,:].cpu().detach().numpy() plt.figure() plt.imshow(np.rot90(convolution_0_5_17), cmap="gray") plt.figure() plt.imshow(np.rot90(input_image.cpu().numpy()[0,0,:,:]),cmap="gray")