import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt from atlas_fit_function import atlas_invMass_mumu ############################################################################################################################# # User defined labels = ['Background', 'Signal', 'Data'] pldict = {} for label in labels: with np.load('DATA/original_histograms/mass_mm_higgs_' + label + '.npz', 'rb') as data: bin_centers = data['bin_centers'] bin_edges = data['bin_edges'] bin_values = data['bin_values'] bin_errors = data['bin_errors'] pldict[label] = [bin_centers, bin_edges, bin_values, bin_errors] xs = np.linspace(bin_edges[0], bin_edges[-1], 301) width = (np.max(xs) - np.min(xs)) / len(bin_centers) chebyshev = False save = False ############################################################################################################################# # Fit simulated background bin_centers = pldict['Background'][0] bin_edges = pldict['Background'][1] bin_values = pldict['Background'][2] bin_errors = pldict['Background'][3] xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1]) def Background(x, a, b, c, d, e, f, g, h, func=atlas_invMass_mumu): if chebyshev: # Choose Chebyshev polynomials as weights from numpy.polynomial.chebyshev import chebval return func(chebval(x, [a, b, c, d, e, f, g, h]), x) else: # Choose some weighting function return func(np.exp(a * x) + b * x**3 + c * x**2 + d * x + h, x) def return_p0(chebyshev): if chebyshev: return (10**6, 1., 1., 1., 1., 1., 1., 1.) else: return (1., 1., 1., 1., 1., 1., 1., 10**6) popt, pcov = curve_fit(Background, bin_centers, bin_values, sigma=bin_errors, p0=return_p0(chebyshev)) perr = np.sqrt(np.diag(pcov)) f, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(16, 9), gridspec_kw={'height_ratios': [3, 1]}) f.suptitle('Fitting simulated background', fontsize=22) ax1.errorbar(bin_centers, bin_values, bin_errors, xerrs, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original SimBkg histogram') ax1.plot(xs, Background(xs, *popt), 'r-', label='Simulated Background fit') ax1.set_ylabel('Number of events', fontsize=20) ax1.tick_params(axis='both', which='major', labelsize=20) ax1.legend(fontsize=20) # ax1.set_yscale('log') ax2.bar(bin_centers, bin_values / Background(bin_centers, *popt) - 1, width=width, color='k') ax2.axhline(0, color='k', ls='--', alpha=0.7) ax2.set_xlabel(r'$m_{\mu \mu}$', fontsize=20) ax2.set_ylabel('(Data-Pred.)/Pred.', fontsize=20) ax2.set_xticks(bin_edges[::4]) ax2.tick_params(axis='both', which='major', labelsize=20) ax2.grid(True) f.tight_layout() if save: plt.savefig('SimBkg_fit.pdf') ############################################################################################################################ # Fit background from data bin_centers = pldict['Data'][0] bin_edges = pldict['Data'][1] bin_values = pldict['Data'][2] bin_errors = pldict['Data'][3] xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1]) # Blind signal region signal_region = (bin_centers < 120) | (bin_centers > 130) bin_centers_masked = bin_centers[signal_region] bin_values_masked = bin_values[signal_region] bin_errors_masked = bin_errors[signal_region] xerrs_masked = xerrs[signal_region] popt_full, pcov_full = curve_fit(Background, bin_centers, bin_values, sigma=bin_errors, p0=return_p0(chebyshev)) popt_masked, pcov = curve_fit(Background, bin_centers_masked, bin_values_masked, sigma=bin_errors_masked, p0=return_p0(chebyshev)) f, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(16, 9), gridspec_kw={'height_ratios': [3, 1]}) f.suptitle('Fitting background from data', fontsize=22) ax1.errorbar(bin_centers_masked, bin_values_masked, bin_errors_masked, xerrs_masked, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original Data histogram') ax1.plot(xs, Background(xs, *popt_full), 'g-', label='Data Background fit full', alpha=0.7) ax1.plot(xs, Background(xs, *popt_masked), 'r-', label='Data Background fit', alpha=0.7) # ax1.text(140, 10**5, 'Full:\na: {:.3e}\nb: {:.3f}\nc: {:.3f}\nd: {:.3e}'.format(*popt_full), fontsize=20) # ax1.text(150, 10**5, 'Blinded:\na: {:.3e}\nb: {:.3f}\nc: {:.3f}\nd: {:.3e}'.format(*popt_masked), fontsize=20) ax1.set_ylabel('Number of events', fontsize=20) ax1.tick_params(axis='both', which='major', labelsize=20) ax1.legend(fontsize=20) # ax1.set_yscale('log') ax2.bar(bin_centers_masked, bin_values_masked / Background(bin_centers_masked, *popt_masked) - 1, width=width / 2., color='g') ax2.bar(bin_centers_masked + width / 2., bin_values_masked / Background(bin_centers_masked, *popt_full) - 1, width=width / 2., color='r') ax2.axhline(0, color='k', ls='--', alpha=0.7) ax2.set_xlabel(r'$m_{\mu \mu}$', fontsize=20) ax2.set_ylabel('(Data-Pred.)/Pred.', fontsize=20) ax2.set_xticks(bin_edges[::4]) ax2.tick_params(axis='both', which='major', labelsize=20) ax2.grid(True) f.tight_layout() if save: plt.savefig('DataBkg_fit.pdf') ############################################################################################################################# # Extract signal (data - background fit) extracted_signal = bin_values - Background(bin_centers, *popt_masked) plt.figure(figsize=(12, 4.5)) plt.title('Extracted signal', fontsize=22) plt.scatter(bin_centers, extracted_signal, color='k', label='Extracted signal') plt.xlabel(r'$m_{\mu \mu}$', fontsize=20) plt.ylabel('Number of events', fontsize=20) plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20) plt.yticks(size=20) plt.legend(fontsize=20) plt.tight_layout() plt.grid() if save: plt.savefig('Extracted_signal.pdf') ############################################################################################################################# # Fit simulated signal bin_centers = pldict['Signal'][0] bin_edges = pldict['Signal'][1] bin_values = pldict['Signal'][2] bin_errors = pldict['Signal'][3] xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1]) def CB(x, A, aL, aR, nL, nR, mCB, sCB): return np.piecewise(x, [(x - mCB) / sCB <= -aL, (x - mCB) / sCB >= aR], [lambda x: A * (nL / np.abs(aL))**nL * np.exp(-aL**2 / 2) * (nL / np.abs(aL) - np.abs(aL) - (x - mCB) / sCB)**(-nL), lambda x: A * (nR / np.abs(aR))**nR * np.exp(-aR**2 / 2) * (nR / np.abs(aR) - np.abs(aR) + (x - mCB) / sCB)**(-nR), lambda x: A * np.exp(-(x - mCB)**2 / (2 * sCB**2)) ]) popt_CB, pcov = curve_fit(CB, bin_centers, bin_values, sigma=bin_errors, p0=[134., 1.5, 1.5, 5., 5., 124.6, 2.7]) perr = np.sqrt(np.diag(pcov)) plt.figure(figsize=(16, 9)) plt.title('Fitting simulated signal', fontsize=22) plt.errorbar(bin_centers, bin_values, bin_errors, xerrs, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original histogram') plt.plot(xs, CB(xs, *popt_CB), 'r-', label='signal fit CB') string = 'CB parameters after fit:\n' for par, pop in zip(['A', r'$\alpha_L$', r'$\alpha_R$', r'$n_L$', r'$n_R$', r'$\overline{m}_{CB}$', r'$\sigma_{CB}$'], popt_CB): string += par + f': {pop:.3f}\n' plt.text(115, 75, string[:-1], size=20, bbox=dict(facecolor='none', edgecolor='gray', boxstyle='round,pad=0.5')) plt.xlabel(r'$m_{\mu \mu}$', fontsize=20) plt.ylabel('Number of events', fontsize=20) plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20) plt.yticks(size=20) plt.legend(fontsize=20) if save: plt.savefig('CB_fit.pdf') ############################################################################################################################# # Scale our signal def scale_signal(x, scale, popt_CB=popt_CB): return scale * CB(x, *popt_CB) popt, pcov = curve_fit(scale_signal, bin_centers, extracted_signal, sigma=bin_errors, p0=[1.]) NHiggs = int(popt_CB[0] * popt[0]) plt.figure(figsize=(12, 8)) plt.title('Fitted signal', fontsize=22) plt.plot(xs, scale_signal(xs, popt), color='r', label='Fitted signal') plt.scatter(bin_centers, extracted_signal, color='k', label='Extracted signal') plt.text(130, -200, r'$\alpha_{{scale}} = {:.3f}$'.format(*popt) + '\n' + r'$N_{{Higgs}} = {:d}$'.format(NHiggs), size=20, bbox=dict(facecolor='w', edgecolor='gray', boxstyle='round,pad=0.5')) plt.xlabel(r'$m_{\mu \mu}$', fontsize=20) plt.ylabel('Number of events', fontsize=20) plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20) plt.yticks(size=20) plt.legend(loc='upper right', fontsize=20) plt.tight_layout() plt.grid() if save: plt.savefig('final_fit.pdf')