from model import ModelCT from matplotlib import pyplot as plt import numpy as np import torch import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_folder = "trained_models/testrun123" # mapa naucenega modela model = ModelCT() model.to(device) model.load_state_dict(torch.load(os.path.join(model_folder, "trained_model_weights.pth"))) model.eval() # Nalozimo npr. filtre iz prve konvolucijske plasti backbone.conv1 weights = model.backbone.conv1.weight.data.cpu().numpy() # weights.shape = (64,1,7,7) -> 64 filtrov, z 1 kanalom, velikosti 7x7 # Vizualizacija 21. filtra iz prve plasti (backbone.conv1) plt.imshow(weights[20,0,:,:], cmap='gray')