123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- import numpy as np
- from scipy.optimize import curve_fit
- import matplotlib.pyplot as plt
- from atlas_fit_function import atlas_invMass_mumu
- #############################################################################################################################
- # User defined
- labels = ['Background', 'Signal', 'Data']
- pldict = {}
- for label in labels:
- with np.load('DATA/original_histograms/mass_mm_higgs_' + label + '.npz', 'rb') as data:
- bin_centers = data['bin_centers']
- bin_edges = data['bin_edges']
- bin_values = data['bin_values']
- bin_errors = data['bin_errors']
- pldict[label] = [bin_centers, bin_edges, bin_values, bin_errors]
- xs = np.linspace(bin_edges[0], bin_edges[-1], 301)
- width = (np.max(xs) - np.min(xs)) / len(bin_centers)
- chebyshev = False
- save = False
- #############################################################################################################################
- # Fit simulated background
- bin_centers = pldict['Background'][0]
- bin_edges = pldict['Background'][1]
- bin_values = pldict['Background'][2]
- bin_errors = pldict['Background'][3]
- xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1])
- def Background(x, a, b, c, d, e, f, g, h, func=atlas_invMass_mumu):
- if chebyshev:
- # Choose Chebyshev polynomials as weights
- from numpy.polynomial.chebyshev import chebval
- return func(chebval(x, [a, b, c, d, e, f, g, h]), x)
- else:
- # Choose some weighting function
- return func(np.exp(a * x) + b * x**3 + c * x**2 + d * x + h, x)
- def return_p0(chebyshev):
- if chebyshev:
- return (10**6, 1., 1., 1., 1., 1., 1., 1.)
- else:
- return (1., 1., 1., 1., 1., 1., 1., 10**6)
- popt, pcov = curve_fit(Background, bin_centers, bin_values, sigma=bin_errors, p0=return_p0(chebyshev))
- perr = np.sqrt(np.diag(pcov))
- f, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(16, 9), gridspec_kw={'height_ratios': [3, 1]})
- f.suptitle('Fitting simulated background', fontsize=22)
- ax1.errorbar(bin_centers, bin_values, bin_errors, xerrs, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original SimBkg histogram')
- ax1.plot(xs, Background(xs, *popt), 'r-', label='Simulated Background fit')
- ax1.set_ylabel('Number of events', fontsize=20)
- ax1.tick_params(axis='both', which='major', labelsize=20)
- ax1.legend(fontsize=20)
- # ax1.set_yscale('log')
- ax2.bar(bin_centers, bin_values / Background(bin_centers, *popt) - 1, width=width, color='k')
- ax2.axhline(0, color='k', ls='--', alpha=0.7)
- ax2.set_xlabel(r'$m_{\mu \mu}$', fontsize=20)
- ax2.set_ylabel('(Data-Pred.)/Pred.', fontsize=20)
- ax2.set_xticks(bin_edges[::4])
- ax2.tick_params(axis='both', which='major', labelsize=20)
- ax2.grid(True)
- f.tight_layout()
- if save:
- plt.savefig('SimBkg_fit.pdf')
- ############################################################################################################################
- # Fit background from data
- bin_centers = pldict['Data'][0]
- bin_edges = pldict['Data'][1]
- bin_values = pldict['Data'][2]
- bin_errors = pldict['Data'][3]
- xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1])
- # Blind signal region
- signal_region = (bin_centers < 120) | (bin_centers > 130)
- bin_centers_masked = bin_centers[signal_region]
- bin_values_masked = bin_values[signal_region]
- bin_errors_masked = bin_errors[signal_region]
- xerrs_masked = xerrs[signal_region]
- popt_full, pcov_full = curve_fit(Background, bin_centers, bin_values, sigma=bin_errors, p0=return_p0(chebyshev))
- popt_masked, pcov = curve_fit(Background, bin_centers_masked, bin_values_masked, sigma=bin_errors_masked, p0=return_p0(chebyshev))
- f, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(16, 9), gridspec_kw={'height_ratios': [3, 1]})
- f.suptitle('Fitting background from data', fontsize=22)
- ax1.errorbar(bin_centers_masked, bin_values_masked, bin_errors_masked, xerrs_masked, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original Data histogram')
- ax1.plot(xs, Background(xs, *popt_full), 'g-', label='Data Background fit full', alpha=0.7)
- ax1.plot(xs, Background(xs, *popt_masked), 'r-', label='Data Background fit', alpha=0.7)
- # ax1.text(140, 10**5, 'Full:\na: {:.3e}\nb: {:.3f}\nc: {:.3f}\nd: {:.3e}'.format(*popt_full), fontsize=20)
- # ax1.text(150, 10**5, 'Blinded:\na: {:.3e}\nb: {:.3f}\nc: {:.3f}\nd: {:.3e}'.format(*popt_masked), fontsize=20)
- ax1.set_ylabel('Number of events', fontsize=20)
- ax1.tick_params(axis='both', which='major', labelsize=20)
- ax1.legend(fontsize=20)
- # ax1.set_yscale('log')
- ax2.bar(bin_centers_masked, bin_values_masked / Background(bin_centers_masked, *popt_masked) - 1, width=width / 2., color='g')
- ax2.bar(bin_centers_masked + width / 2., bin_values_masked / Background(bin_centers_masked, *popt_full) - 1, width=width / 2., color='r')
- ax2.axhline(0, color='k', ls='--', alpha=0.7)
- ax2.set_xlabel(r'$m_{\mu \mu}$', fontsize=20)
- ax2.set_ylabel('(Data-Pred.)/Pred.', fontsize=20)
- ax2.set_xticks(bin_edges[::4])
- ax2.tick_params(axis='both', which='major', labelsize=20)
- ax2.grid(True)
- f.tight_layout()
- if save:
- plt.savefig('DataBkg_fit.pdf')
- #############################################################################################################################
- # Extract signal (data - background fit)
- extracted_signal = bin_values - Background(bin_centers, *popt_masked)
- plt.figure(figsize=(12, 4.5))
- plt.title('Extracted signal', fontsize=22)
- plt.scatter(bin_centers, extracted_signal, color='k', label='Extracted signal')
- plt.xlabel(r'$m_{\mu \mu}$', fontsize=20)
- plt.ylabel('Number of events', fontsize=20)
- plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20)
- plt.yticks(size=20)
- plt.legend(fontsize=20)
- plt.tight_layout()
- plt.grid()
- if save:
- plt.savefig('Extracted_signal.pdf')
- #############################################################################################################################
- # Fit simulated signal
- bin_centers = pldict['Signal'][0]
- bin_edges = pldict['Signal'][1]
- bin_values = pldict['Signal'][2]
- bin_errors = pldict['Signal'][3]
- xerrs = 0.5 * (bin_edges[1:] - bin_edges[:-1])
- def CB(x, A, aL, aR, nL, nR, mCB, sCB):
- return np.piecewise(x, [(x - mCB) / sCB <= -aL,
- (x - mCB) / sCB >= aR],
- [lambda x: A * (nL / np.abs(aL))**nL * np.exp(-aL**2 / 2) * (nL / np.abs(aL) - np.abs(aL) - (x - mCB) / sCB)**(-nL),
- lambda x: A * (nR / np.abs(aR))**nR * np.exp(-aR**2 / 2) * (nR / np.abs(aR) - np.abs(aR) + (x - mCB) / sCB)**(-nR),
- lambda x: A * np.exp(-(x - mCB)**2 / (2 * sCB**2))
- ])
- popt_CB, pcov = curve_fit(CB, bin_centers, bin_values, sigma=bin_errors, p0=[134., 1.5, 1.5, 5., 5., 124.6, 2.7])
- perr = np.sqrt(np.diag(pcov))
- plt.figure(figsize=(16, 9))
- plt.title('Fitting simulated signal', fontsize=22)
- plt.errorbar(bin_centers, bin_values, bin_errors, xerrs, marker='o', markersize=5, color='k', ecolor='k', ls='', label='Original histogram')
- plt.plot(xs, CB(xs, *popt_CB), 'r-', label='signal fit CB')
- string = 'CB parameters after fit:\n'
- for par, pop in zip(['A', r'$\alpha_L$', r'$\alpha_R$', r'$n_L$', r'$n_R$', r'$\overline{m}_{CB}$', r'$\sigma_{CB}$'], popt_CB):
- string += par + f': {pop:.3f}\n'
- plt.text(115, 75, string[:-1], size=20, bbox=dict(facecolor='none', edgecolor='gray', boxstyle='round,pad=0.5'))
- plt.xlabel(r'$m_{\mu \mu}$', fontsize=20)
- plt.ylabel('Number of events', fontsize=20)
- plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20)
- plt.yticks(size=20)
- plt.legend(fontsize=20)
- if save:
- plt.savefig('CB_fit.pdf')
- #############################################################################################################################
- # Scale our signal
- def scale_signal(x, scale, popt_CB=popt_CB):
- return scale * CB(x, *popt_CB)
- popt, pcov = curve_fit(scale_signal, bin_centers, extracted_signal, sigma=bin_errors, p0=[1.])
- NHiggs = int(popt_CB[0] * popt[0])
- plt.figure(figsize=(12, 8))
- plt.title('Fitted signal', fontsize=22)
- plt.plot(xs, scale_signal(xs, popt), color='r', label='Fitted signal')
- plt.scatter(bin_centers, extracted_signal, color='k', label='Extracted signal')
- plt.text(130, -200, r'$\alpha_{{scale}} = {:.3f}$'.format(*popt) + '\n' + r'$N_{{Higgs}} = {:d}$'.format(NHiggs), size=20, bbox=dict(facecolor='w', edgecolor='gray', boxstyle='round,pad=0.5'))
- plt.xlabel(r'$m_{\mu \mu}$', fontsize=20)
- plt.ylabel('Number of events', fontsize=20)
- plt.xticks(bin_edges[::4], bin_edges[::4].astype(int), size=20)
- plt.yticks(size=20)
- plt.legend(loc='upper right', fontsize=20)
- plt.tight_layout()
- plt.grid()
- if save:
- plt.savefig('final_fit.pdf')
|