import numpy as np from pathlib import Path from curvature_assembly import oriented_particle, pytree_transf, file_management from curvature_assembly.data_protocols import * import json from enum import Enum from typing import TypeVar from functools import partial import jax from dataclasses import dataclass import copy from abc import ABC, abstractmethod T = TypeVar('T') SIMULATION_PARAMS_FILENAME = 'simulation_params.json' INTERACTION_PARAMS_FILENAME = 'interaction_params.json' PARAMS_GRAD_FILENAME = 'param_grad.json' PARAMS_GRAD_CLIPPED_FILENAME = 'param_grad_clipped.json' NEIGHBOR_LIST_PARAMS_FILENAME = 'neighbor_list_params.json' COST_FILENAME = 'cost.dat' SIMULATION_LOG_FILENAME = 'simulation_log.npz' COORD_HISTORY_FILENAME = 'coord_history.npy' ORIENT_HISTORY_FILENAME = 'orient_history.npy' BOX_FILENAME = 'box_size.dat' def coord_filename(idx: int): if idx is None: return 'coord.dat' return f'coord_{idx}.dat' def orient_filename(idx: int): if idx is None: return 'orient.dat' return f'orient_{idx}.dat' def weight_matrix_filename(idx: int): if idx is None: return 'weight_matrix.dat' return f'weight_matrix_{idx}.dat' def export_simulation_params(params: SimulationParams, path: Path) -> None: """Export simulation parameters as a dictionary.""" with open(path.joinpath(SIMULATION_PARAMS_FILENAME), 'w') as f: json.dump(vars(params), f) def load_simulation_params(path: Path) -> dict: """Load simulation parameters as a dictionary.""" with open(path.joinpath(SIMULATION_PARAMS_FILENAME), 'r') as f: params_dict = json.load(f) return params_dict def convert_arrays_to_lists(params: InteractionParams) -> dict: """ Converts jax arrays in InteractionParams instance to lists and returns params as dict. Used for saving params in .json files. """ no_array_dict = {} for key, val in vars(params).items(): no_array_dict[key] = np.asarray(val).tolist() if isinstance(val, jnp.ndarray) else val return no_array_dict def convert_lists_to_arrays(params_dict: dict, force_float: bool = True) -> dict: """Converts list in a dictionary to jax arrays.""" array_dict = {} for key, val in params_dict.items(): if force_float and isinstance(val, int): val = float(val) array_dict[key] = jnp.array(val) if isinstance(val, list) else val return array_dict def export_interaction_params(params: InteractionParams, path: Path, filename: str = None) -> None: """Export interaction parameters as a dictionary. Jax arrays are converted to lists.""" if filename is None: filename = INTERACTION_PARAMS_FILENAME filename = path.joinpath(filename) file_management.overwrite_protection(filename) with open(filename, 'w') as f: json.dump(convert_arrays_to_lists(params), f) def convert_enum_to_int(params: NeighborListParams) -> dict: no_array_dict = {} for key, val in vars(params).items(): no_array_dict[key] = val.value if isinstance(val, Enum) else val return no_array_dict def export_neighbor_list_params(params: NeighborListParams, path: Path) -> None: """Export neighbor list parameters as a dictionary.""" filename = path.joinpath(NEIGHBOR_LIST_PARAMS_FILENAME) file_management.overwrite_protection(filename) with open(filename, 'w') as f: json.dump(convert_enum_to_int(params), f) def export_cost(cost: Array, path: Path) -> None: """Export cost function array.""" filename = path.joinpath(COST_FILENAME) file_management.overwrite_protection(filename) np.savetxt(filename, cost) export_param_grad = partial(export_interaction_params, filename=PARAMS_GRAD_FILENAME) export_param_grad_clipped = partial(export_interaction_params, filename=PARAMS_GRAD_CLIPPED_FILENAME) def load_interaction_params(path: Path, filename: str = None, convert_arrays=True) -> dict: """Load interaction parameters as a dictionary.""" if filename is None: filename = INTERACTION_PARAMS_FILENAME with open(path.joinpath(filename), 'r') as f: params_dict = json.load(f) if convert_arrays: return convert_lists_to_arrays(params_dict) return params_dict load_param_grad = partial(load_interaction_params, filename=PARAMS_GRAD_FILENAME) load_param_grad_clipped = partial(load_interaction_params, filename=PARAMS_GRAD_CLIPPED_FILENAME) def load_cost(path: Path) -> np.ndarray: """Load cost function array.""" filename = path.joinpath(COST_FILENAME) return np.loadtxt(filename) def save_single_config(body: rigid_body.RigidBody, folder: Path, save_idx: int = None) -> None: """General function for saving single config data.""" np.savetxt(folder.joinpath(coord_filename(save_idx)).resolve(), body.center) np.savetxt(folder.joinpath(orient_filename(save_idx)).resolve(), body.orientation.vec) def load_single_config(folder: Path, save_idx: int = None) -> rigid_body.RigidBody: """General function for loading single config data.""" coord = jnp.asarray(np.loadtxt(folder.joinpath(coord_filename(save_idx)).resolve())) orient = jnp.asarray(np.loadtxt(folder.joinpath(orient_filename(save_idx)).resolve())) return rigid_body.RigidBody(coord, rigid_body.Quaternion(orient)) def init_config_folder_name(num: int, density: float) -> str: return f'n{num}rho{int(1000 * density)}' def save_initial_config(body: rigid_body.RigidBody, density: float, idx: int, init_folder: Path) -> None: """Save the initial RigidBody configuration with a given density and index.""" save_folder = init_folder.joinpath(init_config_folder_name(body.center.shape[0], density)) save_folder.mkdir(exist_ok=True, parents=True) save_single_config(body, save_folder, idx) def load_initial_config(n: int, density: float, idx: int, init_folder: Path) -> rigid_body.RigidBody: """Load the initial RigidBody configuration with a given density and index.""" save_folder = init_folder.joinpath(init_config_folder_name(n, density)) return load_single_config(save_folder, idx) def load_multiple_initial_configs(n: int, density: float, indices: list[int], init_folder: Path) \ -> list[rigid_body.RigidBody]: """Load multiple initial RigidBody configurations with a given density and a list of indices.""" save_folder = init_folder.joinpath(init_config_folder_name(n, density)) return [load_single_config(save_folder, idx) for idx in indices] def load_multiple_initial_configs_single_object(n: int, density: float, indices: list[int], init_folder: Path, coord_rescale_factor: float = None) -> rigid_body.RigidBody: """Load multiple initial RigidBody configurations with a given density and a list of indices as a single object.""" save_folder = init_folder.joinpath(init_config_folder_name(n, density)) coord = [] orient = [] for i in indices: coord_i = jnp.asarray(np.loadtxt(save_folder.joinpath(coord_filename(i)).resolve())) if coord_rescale_factor is not None: coord_i *= coord_rescale_factor coord.append(coord_i) orient.append(jnp.asarray(np.loadtxt(save_folder.joinpath(orient_filename(i)).resolve()))) return rigid_body.RigidBody(jnp.stack(coord, axis=0), rigid_body.Quaternion(jnp.stack(orient, axis=0))) def simulation_log_data_fields(simulation_log: SimulationLog) -> dict: """Return a dictionary of data fields in a simulation log object, ie ignoring other internal attributes.""" data_dict = {} for key, val in vars(simulation_log).items(): try: if val.shape[0] == pytree_transf.data_length(simulation_log, ignore_non_array_leaves=True): data_dict[key] = val[jnp.nonzero(val)] # exclude zero entries that may not have been populated except (AttributeError, IndexError): pass return data_dict def export_simulation_log(simulation_log: SimulationLog, folder: Path) -> None: """Export simulation log data in a single file.""" file_management.overwrite_protection(folder.joinpath(SIMULATION_LOG_FILENAME)) data_dict = simulation_log_data_fields(simulation_log) np.savez(folder.joinpath(SIMULATION_LOG_FILENAME), **data_dict) def load_simulation_log(folder: Path) -> dict: """Load simulation log data from file.""" npz_file = np.load(folder.joinpath(SIMULATION_LOG_FILENAME)) return dict(npz_file) def export_state_history(state_history: SimulationStateHistory, folder: Path) -> None: """Save simulation state history data.""" # we exclude array indices that were not populated relevant_indices = jnp.nonzero(jnp.linalg.norm(state_history.coord, axis=(-2, -1))) np.save(folder.joinpath(COORD_HISTORY_FILENAME), state_history.coord[relevant_indices]) np.save(folder.joinpath(ORIENT_HISTORY_FILENAME), state_history.orient[relevant_indices]) def load_state_history(folder: Path) -> tuple[np.ndarray, np.ndarray]: """Save simulation state history data.""" coord = np.load(folder.joinpath(COORD_HISTORY_FILENAME)) orient = np.load(folder.joinpath(ORIENT_HISTORY_FILENAME)) return coord, orient def export_simulation_state(body: rigid_body.RigidBody, simulation_params: SimulationParams, interaction_params: InteractionParams, folder: Path, idx: int) -> None: """Export config data along with simulation and interaction parameters used in simulation.""" export_simulation_params(simulation_params, folder) export_interaction_params(interaction_params, folder, idx=idx) np.savetxt(folder.joinpath(f'coord_frame{idx}.dat').resolve(), body.center) np.savetxt(folder.joinpath(f'orient_frame{idx}.dat').resolve(), body.orientation.vec) np.savetxt(folder.joinpath(f'weight_matrix_frame{idx}.dat').resolve(), oriented_particle.get_weight_matrices(body.orientation, interaction_params.eigvals).reshape(-1, 9)) def direct_visualization_export(body: rigid_body.RigidBody, eigvals: Array, export_folder: Path): coord = body.center weight_matrix = oriented_particle.get_weight_matrices(body.orientation, eigvals).reshape(-1, 9) np.savetxt(export_folder.joinpath(f'coord.dat').resolve(), coord) np.savetxt(export_folder.joinpath(f'weight_matrix.dat').resolve(), weight_matrix) def get_config_for_visualization(results_folder: Path, export_folder: Path, idx: int = -1, zero_cm: bool = True) -> None: interaction_params = load_interaction_params(results_folder) coord, orient = load_state_history(results_folder) if zero_cm: coord = cannonicalize_cm(coord) weight_matrix = oriented_particle.get_weight_matrices( rigid_body.Quaternion(orient[idx]), interaction_params['eigvals']).reshape(-1, 9) np.savetxt(export_folder.joinpath(f'coord.dat').resolve(), coord) np.savetxt(export_folder.joinpath(f'orient.dat').resolve(), orient) np.savetxt(export_folder.joinpath(f'weight_matrix.dat').resolve(), weight_matrix) def cannonicalize_cm(coord: Array) -> Array: cm = jnp.mean(coord, axis=-2) return coord - cm[..., None, :] def prepare_animation_data(results_folder: Path, interaction_params: dict, get_every: int = 1, zero_cm=True) -> dict[str, np.ndarray]: coord_history, orient_history = load_state_history(results_folder) if zero_cm: coord_history = cannonicalize_cm(coord_history) coord_history = coord_history[::get_every] orient_history = orient_history[::get_every] def weight_matrix_frame(quaternion_vec): return oriented_particle.get_weight_matrices( rigid_body.Quaternion(quaternion_vec), interaction_params['eigvals']).reshape(-1, 9) weight_matrix_hist = jax.vmap(weight_matrix_frame)(orient_history) eigensystem = oriented_particle.eigensystem(rigid_body.Quaternion(orient_history)) return {'coord': coord_history, 'weight_matrix': weight_matrix_hist, 'eigensystem': eigensystem} def export_animation_data(anim_data: dict[str, np.ndarray], box: float, export_folder: Path) -> None: """Saves animation data matrices.""" np.save(export_folder.joinpath('anim_coord'), anim_data['coord']) np.save(export_folder.joinpath('anim_weight_matrix'), anim_data['weight_matrix']) np.save(export_folder.joinpath('anim_eigensystem'), anim_data['eigensystem']) np.savetxt(export_folder.joinpath(BOX_FILENAME), np.asarray(box).reshape(1,)) def export_cost_and_grad(cost: float, grad: InteractionParams | None, folder: Path, idx: int) -> None: """ Export gradient data into a new file and append cost function value to an existing one. If gradient data was not calculated, pass None to the function. """ with open(folder.joinpath('cost_function.dat'), 'a') as f: f.writelines(f'{cost: .4f}\n') if grad is not None: export_param_grad(grad, folder, idx=idx) class OptimizationSaver: def __init__(self, folder: Path, simulation_params: SimulationParams, overwrite_folder_with_no_results=False, folder_num: int = None): if folder_num is not None: self.base_folder = file_management.new_folder_with_number(folder, folder_num) else: self.base_folder = file_management.new_folder(folder) export_simulation_params(simulation_params, self.base_folder) self._export_results_happened = False self._export_inter_params_happened = False self._iter_folder = file_management.new_folder(self.base_folder.joinpath(f'iter_0')) def _get_iter_folder(self, check_happened: bool) -> Path: if check_happened: self._iter_folder = file_management.new_folder(self.base_folder.joinpath(f'iter')) self._export_results_happened = False self._export_inter_params_happened = False return self._iter_folder def _get_config_folder(self, config_idx: int) -> Path: folder = self._iter_folder.joinpath(f'config_{config_idx}') folder.mkdir(exist_ok=True) return folder def export_interaction_params(self, interaction_params: InteractionParams) -> None: folder = self._get_iter_folder(self._export_results_happened) export_interaction_params(interaction_params, folder) self._export_inter_params_happened = True def export_param_updates(self, updates: InteractionParams) -> None: folder = self._get_iter_folder(self._export_results_happened) export_interaction_params(updates, folder, filename='interaction_param_updates.json') self._export_inter_params_happened = True def export_run_params(self, run_params: dict): with open(self.base_folder.joinpath(f'run_params.json'), 'w') as f: json.dump(run_params, f) def export_additional_simulation_data(self, data: dict): with open(self.base_folder.joinpath(f'aux_simulation_data.json'), 'w') as f: json.dump(data, f) def export_cost_function_info(self, cost_fn): with open(self.base_folder.joinpath(f'cost_function_info.dat'), 'w') as f: f.write(str(cost_fn)) def export_results(self, bptt_results: BpttResults, aux: SimulationAux) -> None: folder = self._get_iter_folder(self._export_results_happened) try: export_cost(bptt_results.cost, folder) export_param_grad(bptt_results.grad, folder) export_simulation_log(aux.log, folder) export_state_history(aux.state_history, folder) self._export_results_happened = True except ValueError: raise ValueError('For exporting multiple results, use method "export_multiple_results".') def export_multiple_results(self, bptt_results: BpttResults, aux: SimulationAux) -> None: self._get_iter_folder(self._export_results_happened) bptt_results_list = pytree_transf.split_to_list(bptt_results) aux_list = pytree_transf.split_to_list(aux) for config_idx, (result, a) in enumerate(zip(bptt_results_list, aux_list)): folder = self._get_config_folder(config_idx) export_cost(result.cost, folder) export_param_grad(result.grad, folder) export_simulation_log(a.log, folder) export_state_history(a.state_history, folder) self._export_results_happened = True def export_clipped_gradients(self, grad_clipped: InteractionParams): grad_clipped_list = pytree_transf.split_to_list(grad_clipped) for config_idx, grad in enumerate(grad_clipped_list): folder = self._get_config_folder(config_idx) export_param_grad_clipped(grad, folder) class NoResultsError(Exception): pass class OptimizationLoader: """Convenience class to load results of an optimization simulation.""" def __init__(self, folder: Path): self.base_folder = folder.resolve() if not self.base_folder.exists(): raise NoResultsError(f"Results folder {self.base_folder} does not exist.") def get_results_folder(self, iter_idx: int, config_idx: int = None): if iter_idx < 0: iter_idx = self.all_iter_indices()[iter_idx] if config_idx is None: return self.base_folder.joinpath(f'iter_{iter_idx}') return self.base_folder.joinpath(f'iter_{iter_idx}').joinpath(f'config_{config_idx}') def last_iter_idx(self): try: return self.all_iter_indices()[-1] except IndexError: return 0 def all_config_indices(self, iter_idx: int = None) -> list: if iter_idx is None: iter_idx = self.last_iter_idx() iteration_folders = [folder for folder in self.get_results_folder(iter_idx).glob(f'config_*')] all_directory_nums = [] for folder in iteration_folders: _, dir_num = file_management.split_base_and_num(folder.name, sep='_', no_num_return=0) all_directory_nums.append(dir_num) return sorted(all_directory_nums) def num_replicas(self): return len(self.all_config_indices()) def all_iter_indices(self) -> list: iteration_folders = [folder for folder in self.base_folder.glob(f'iter_*')] all_directory_nums = [] for folder in iteration_folders: _, dir_num = file_management.split_base_and_num(folder.name, sep='_', no_num_return=0) if not file_management.recursive_dir_empty(folder, ignore_top_level_files=True): all_directory_nums.append(dir_num) return sorted(all_directory_nums) def load_simulation_params(self, iter_idx: int = None, config_idx: int = None) -> dict: return load_simulation_params(self.base_folder) def box_size_at_number_density(self): simulation_params = self.load_simulation_params() return oriented_particle.box_size_at_number_density(simulation_params["num"], simulation_params["density"], spatial_dimension=3) def box_size_at_ellipsoid_density(self, iter_idx: int = None): simulation_params = self.load_simulation_params() if iter_idx is None: iter_idx = self.last_iter_idx() interaction_params = self.load_interaction_params(iter_idx) return oriented_particle.box_size_at_ellipsoid_density(simulation_params["num"], simulation_params["density"], interaction_params["eigvals"]) def box_size(self, iter_idx: int = None): if iter_idx is None: iter_idx = self.last_iter_idx() interaction_params = self.load_interaction_params(iter_idx) particle_volume = oriented_particle.ellipsoid_volume(interaction_params["eigvals"]) if jnp.all(jnp.isclose(particle_volume, 1., atol=1e-4)): return self.box_size_at_number_density() return self.box_size_at_ellipsoid_density(iter_idx=iter_idx) def load_additional_simulation_data(self) -> dict: with open(self.base_folder.joinpath(f'aux_simulation_data.json'), 'r') as f: data = json.load(f) return data def load_run_params(self) -> dict: with open(self.base_folder.joinpath(f'run_params.json'), 'r') as f: run_params = json.load(f) return run_params def load_interaction_params(self, iter_idx: int, config_idx: int = None, convert_arrays=True) -> dict: return load_interaction_params(self.get_results_folder(iter_idx), convert_arrays=convert_arrays) def load_multiple_interaction_params(self, iter_indices: list = None) -> dict: if iter_indices is None: iter_indices = self.all_iter_indices() return pytree_transf.stack([self.load_interaction_params(iter_idx) for iter_idx in iter_indices]) def load_gradient(self, iter_idx: int, config_idx: int = None) -> dict: return load_param_grad(self.get_results_folder(iter_idx, config_idx)) def load_clipped_gradient(self, iter_idx: int, config_idx: int = None) -> dict: return load_param_grad_clipped(self.get_results_folder(iter_idx, config_idx)) def load_multiple_gradients(self, iter_idx: int, config_indices: list = None) -> list[dict, ...]: if config_indices is None: config_indices = self.all_config_indices() return [self.load_gradient(iter_idx, config_idx) for config_idx in config_indices] def load_cost(self, iter_idx: int, config_idx: int = None) -> np.ndarray: return load_cost(self.get_results_folder(iter_idx, config_idx)) def load_cost_all_config(self, iter_idx: int): config_indices = self.all_config_indices() config_costs = [] for config_idx in config_indices: config_costs.append(load_cost(self.get_results_folder(iter_idx, config_idx))) return np.stack(config_costs) def load_cost_all(self) -> np.ndarray: inter_indices = self.all_iter_indices() all_costs = [] for iter_idx in inter_indices: all_costs.append(self.load_cost_all_config(iter_idx)) return np.stack(all_costs) def load_simulation_log(self, iter_idx: int, config_idx: int = None) -> dict: return load_simulation_log(self.get_results_folder(iter_idx, config_idx)) def load_body(self, iter_idx: int, config_idx: int, time_idx: int) -> rigid_body.RigidBody: trajectory = self.load_trajectory(iter_idx=iter_idx, config_idx=config_idx) return trajectory[time_idx] def load_multiple_bodies(self, iter_idx: int, time_idx: int = -1, config_indices: list[int] = None): if config_indices is None: config_indices = self.all_config_indices(iter_idx) return pytree_transf.stack([self.load_body(iter_idx, config_idx, time_idx) for config_idx in config_indices]) def load_trajectory(self, iter_idx: int, config_idx: int) -> rigid_body.RigidBody: coord, orient = load_state_history(self.get_results_folder(iter_idx, config_idx)) return rigid_body.RigidBody(jnp.asarray(coord), rigid_body.Quaternion(jnp.asarray(orient))) def load_multiple_config_trajectories(self, iter_idx: int, config_indices: list[int]) -> rigid_body.RigidBody: return pytree_transf.stack([self.load_trajectory(iter_idx, config_idx) for config_idx in config_indices]) def load_all_iter_trajectories(self, config_idx: int) -> rigid_body.RigidBody: iter_indices = self.all_iter_indices() return pytree_transf.stack([self.load_trajectory(iter_idx, config_idx) for iter_idx in iter_indices]) def get_config_for_visualization(self, iter_idx: int, config_idx: int, export_folder: Path, frame_idx: int = -1, zero_cm: bool = True): return get_config_for_visualization(self.get_results_folder(iter_idx, config_idx), export_folder, idx=frame_idx, zero_cm=zero_cm) def export_animation_data(self, iter_idx: int, config_idx: int, export_folder: Path, get_every: int = 1, zero_cm: bool = False) -> None: interaction_params = self.load_interaction_params(iter_idx) anim_data = prepare_animation_data(self.get_results_folder(iter_idx, config_idx), interaction_params, get_every=get_every, zero_cm=zero_cm) box_size = self.box_size(iter_idx=iter_idx) export_animation_data(anim_data, box_size, export_folder) @dataclass(frozen=True) class PlotData(ABC): """Abstract class for saving and loading plot data. Children should add attributes for this data.""" run_params: dict results_path: Path @property @abstractmethod def cluster_data_folder(self) -> str: """Subclasses must define a folder name for saving/loading data.""" pass @classmethod @abstractmethod def calculate_data(cls, results_folder: Path, **kwargs) -> "PlotData": """A method that fills the class with data.""" pass @classmethod def get_save_path(cls, results_path) -> Path: results_base = results_path.parent results_filename = f'{results_path.name}.json' save_path_base = results_base / cls.cluster_data_folder save_path_base.mkdir(exist_ok=True) return save_path_base / results_filename def save(self) -> None: self_as_dict = vars(copy.deepcopy(self)) for key in self_as_dict: if isinstance(self_as_dict[key], jnp.ndarray): self_as_dict[key] = np.asarray(self_as_dict[key]).tolist() self_as_dict['results_path'] = str(self_as_dict['results_path']) with open(self.get_save_path(self.results_path), 'w') as f: json.dump(self_as_dict, f) @classmethod def load(cls, results_path: Path) -> "PlotData": cluster_data_path = cls.get_save_path(results_path) if not cluster_data_path.exists(): raise FileNotFoundError("Clustering results for the given path not yet exported.") with open(cluster_data_path, 'r') as f: cls_as_dict = json.load(f) for key in cls_as_dict: if isinstance(cls_as_dict[key], list): cls_as_dict[key] = jnp.asarray(cls_as_dict[key]) cls_as_dict['results_path'] = Path(cls_as_dict['results_path']) return cls(**cls_as_dict) @classmethod def get_data(cls, results_folder: Path, recalculate: bool = False, **calculate_data_kwargs) -> "PlotData": if recalculate: print(f'Recalculating results for {results_folder}...') csd = cls.calculate_data(results_folder, **calculate_data_kwargs) csd.save() return csd try: csd = cls.load(results_folder) except FileNotFoundError: print(f'Results for folder {results_folder} not yet exported, calculating...') csd = cls.calculate_data(results_folder, **calculate_data_kwargs) csd.save() return csd def figure_file_name(base_file_name: str, results_folder: Path, *, iter_idx: int = None, config_idx: int = None, figure_folder: Path = Path("/home/andraz/CurvatureAssemblyFigures")): figure_folder.mkdir(exist_ok=True) results_folder_base_name, results_idx = file_management.split_base_and_num(results_folder.name, sep='_', no_num_return='') base = Path(base_file_name).stem suffix = Path(base_file_name).suffix fig_folder = figure_folder.joinpath(f'{results_folder_base_name}_{results_idx}') fig_folder.mkdir(exist_ok=True) if iter_idx is None and config_idx is None: return fig_folder.joinpath(f'{base}{suffix}') fig_folder = fig_folder.joinpath(f'{base}') fig_folder.mkdir(exist_ok=True) if config_idx is None: return fig_folder.joinpath(f'{base}_iter{iter_idx}{suffix}') if iter_idx is None: return fig_folder.joinpath(f'{base}_config{config_idx}{suffix}') fig_folder = fig_folder.joinpath(f'iter{iter_idx}') fig_folder.mkdir(exist_ok=True) return fig_folder.joinpath(f'{base}_iter{iter_idx}_config{config_idx}{suffix}')