|
@@ -1,4 +1,3 @@
|
|
-import matplotlib.pyplot as plt
|
|
|
|
from charged_shells import expansion, interactions, mapping, functions
|
|
from charged_shells import expansion, interactions, mapping, functions
|
|
from charged_shells.parameters import ModelParams
|
|
from charged_shells.parameters import ModelParams
|
|
import numpy as np
|
|
import numpy as np
|
|
@@ -6,95 +5,147 @@ from typing import Literal
|
|
from pathlib import Path
|
|
from pathlib import Path
|
|
from functools import partial
|
|
from functools import partial
|
|
import json
|
|
import json
|
|
-from itertools import cycle
|
|
|
|
|
|
+from plot_settings import *
|
|
|
|
+from dataclasses import dataclass
|
|
|
|
|
|
Array = np.ndarray
|
|
Array = np.ndarray
|
|
Expansion = expansion.Expansion
|
|
Expansion = expansion.Expansion
|
|
-RotConfig = Literal['ep', 'pp']
|
|
|
|
|
|
+RotConfig = Literal['ep', 'pp', 'sep']
|
|
|
|
|
|
|
|
|
|
-def peak_energy_plot(kappaR: Array,
|
|
|
|
- a_bar: Array,
|
|
|
|
- which: Literal['ep', 'pp'],
|
|
|
|
- R: float = 150,
|
|
|
|
- dist: float = 2.,
|
|
|
|
- l_max=20,
|
|
|
|
- save_as: Path = None):
|
|
|
|
|
|
+@dataclass
|
|
|
|
+class Peak:
|
|
|
|
+ rot_config: str
|
|
|
|
+ y_label: str
|
|
|
|
+ ex1: Expansion
|
|
|
|
+ ex2: Expansion
|
|
|
|
+ emanuele_data_column: int
|
|
|
|
+ log_y: bool
|
|
|
|
+ kappaR_axis_in_expansion: int = None
|
|
|
|
|
|
- params = ModelParams(R=R, kappaR=kappaR)
|
|
|
|
|
|
|
|
- ex1 = expansion.MappedExpansionQuad(a_bar[:, None], params.kappaR[None, :], 0.001, l_max=l_max)
|
|
|
|
- ex2 = ex1.clone()
|
|
|
|
- if which == 'ep':
|
|
|
|
- ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
|
|
|
|
|
|
+class PeakEP(Peak):
|
|
|
|
|
|
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist), 1)
|
|
|
|
- energy = energy_fn(ex1, ex2, params)
|
|
|
|
|
|
+ def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
|
|
|
|
+ self.emanuele_data_column = 4
|
|
|
|
+ self.y_label = r'$|U_{EP}|$' if log_y else r'$U_{EP}$'
|
|
|
|
+ self.ex1 = ex.clone()
|
|
|
|
+ self.ex2 = ex.clone()
|
|
|
|
+ self.ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
|
|
|
|
+ self.log_y = log_y
|
|
|
|
+ self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
|
|
|
|
|
|
- fig, ax = plt.subplots()
|
|
|
|
- for en, ab in zip(energy, a_bar):
|
|
|
|
- ax.plot(kappaR, en / en[0], label=rf'$\bar a = {ab:.1f}$')
|
|
|
|
- # ax.plot(kappaR, en, label=rf'$\bar a = {ab:.1f}$')
|
|
|
|
- ax.legend(fontsize=12)
|
|
|
|
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
|
|
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
|
|
|
|
- ax.set_ylabel(rf'$\bar V$', fontsize=15)
|
|
|
|
- plt.tight_layout()
|
|
|
|
- if save_as is not None:
|
|
|
|
- plt.savefig(save_as, dpi=600)
|
|
|
|
- plt.show()
|
|
|
|
|
|
|
|
|
|
+class PeakPP(Peak):
|
|
|
|
|
|
-def IC_peak_energy_plot(config_data: dict,
|
|
|
|
- a_bar: list,
|
|
|
|
- which: RotConfig,
|
|
|
|
- max_kappaR: float = 30.,
|
|
|
|
- R: float = 150,
|
|
|
|
- save_as: Path = None,
|
|
|
|
- save_data: bool = False,
|
|
|
|
- quad_correction: bool = False):
|
|
|
|
|
|
+ def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
|
|
|
|
+ self.emanuele_data_column = 3
|
|
|
|
+ self.y_label = r'$U_{PP}$'
|
|
|
|
+ self.ex1 = ex.clone()
|
|
|
|
+ self.ex2 = ex.clone()
|
|
|
|
+ self.log_y = log_y
|
|
|
|
+ self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
|
|
|
|
|
|
- em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
- em_data = np.load(em_data_path.joinpath("pair_energy_fig11.npz"))
|
|
|
|
- data = em_data['fixA']
|
|
|
|
|
|
|
|
- if which == 'ep':
|
|
|
|
- column_idx = 4
|
|
|
|
- elif which == 'pp':
|
|
|
|
- column_idx = 3
|
|
|
|
- else:
|
|
|
|
- raise ValueError
|
|
|
|
|
|
+class PeakSEP(Peak):
|
|
|
|
|
|
- abar, inverse, counts = np.unique(data[:, 1], return_counts=True, return_inverse=True)
|
|
|
|
- all_kappaR = np.unique(data[:, 2])
|
|
|
|
|
|
+ def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
|
|
|
|
+ self.emanuele_data_column = 5
|
|
|
|
+ self.y_label = r'$|U_{sEP}|$' if log_y else r'$U_{sEP}$'
|
|
|
|
+ self.ex1 = ex.clone()
|
|
|
|
+ self.ex2 = ex.clone()
|
|
|
|
+ self.ex1.rotate_euler(alpha=0, beta=np.pi / 4, gamma=0)
|
|
|
|
+ self.ex2.rotate_euler(alpha=0, beta=np.pi / 4, gamma=0)
|
|
|
|
+ self.log_y = log_y
|
|
|
|
+ self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
|
|
|
|
|
|
- kappaR = np.geomspace(np.min(all_kappaR), max_kappaR, 30)
|
|
|
|
- params = ModelParams(R=R, kappaR=kappaR)
|
|
|
|
|
|
|
|
- ex1 = expansion.MappedExpansionQuad(np.array(a_bar)[:, None], params.kappaR[None, :], 0.001, l_max=20)
|
|
|
|
- ex2 = ex1.clone()
|
|
|
|
- if which == 'ep':
|
|
|
|
- ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
|
|
|
|
|
|
+def get_charge_energy_dicts(peak: Peak, params: ModelParams, emanuele_data: Array, sigma0: Array, abar_cs: list, sigma_tilde=0.001):
|
|
|
|
+ abar_ic, inverse, counts = np.unique(emanuele_data[:, 1], return_counts=True, return_inverse=True)
|
|
|
|
|
|
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2), 1)
|
|
|
|
- energy = energy_fn(ex1, ex2, params)
|
|
|
|
|
|
+ energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2),
|
|
|
|
+ peak.kappaR_axis_in_expansion)
|
|
|
|
+ energy = energy_fn(peak.ex1, peak.ex2, params)
|
|
|
|
|
|
data_dict_ic = {}
|
|
data_dict_ic = {}
|
|
data_dict_cs = {}
|
|
data_dict_cs = {}
|
|
k = 0
|
|
k = 0
|
|
- for i in range(len(abar)):
|
|
|
|
- ab = np.around(abar[i], 5)
|
|
|
|
- if ab in np.around(a_bar, 5):
|
|
|
|
|
|
+ for i in range(len(abar_ic)):
|
|
|
|
+ ab = np.around(abar_ic[i], 5)
|
|
|
|
+ if ab in np.around(abar_cs, 5):
|
|
idx, = np.nonzero(inverse == i)
|
|
idx, = np.nonzero(inverse == i)
|
|
- kR = data[idx, 2][data[idx, 2] <= max_kappaR]
|
|
|
|
- en = data[idx, column_idx][data[idx, 2] <= max_kappaR]
|
|
|
|
- if quad_correction:
|
|
|
|
- en *= extra_correction(ab, kR)
|
|
|
|
|
|
+ charge = emanuele_data[idx, 0]
|
|
|
|
+ en = emanuele_data[idx, peak.emanuele_data_column]
|
|
|
|
+ sort = np.argsort(charge)
|
|
|
|
+ if peak.log_y:
|
|
|
|
+ data_dict_ic[ab] = np.stack((charge[sort] / 280 + 2, np.abs(en)[sort])).T
|
|
|
|
+ data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, np.abs(energy[k]))).T
|
|
|
|
+ else:
|
|
|
|
+ data_dict_ic[ab] = np.stack((charge[sort] / 280 + 2, en[sort])).T
|
|
|
|
+ data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, energy[k])).T
|
|
|
|
+ k += 1
|
|
|
|
+
|
|
|
|
+ return data_dict_ic, data_dict_cs
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def get_kappaR_energy_dicts(peak: Peak, params: ModelParams, emanuele_data: Array, kappaR: Array, abar_cs: list, max_kappaR: float = 50):
|
|
|
|
+ abar_ic, inverse = np.unique(emanuele_data[:, 1], return_inverse=True)
|
|
|
|
+
|
|
|
|
+ energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2),
|
|
|
|
+ peak.kappaR_axis_in_expansion)
|
|
|
|
+ energy = energy_fn(peak.ex1, peak.ex2, params)
|
|
|
|
+
|
|
|
|
+ data_dict_ic = {}
|
|
|
|
+ data_dict_cs = {}
|
|
|
|
+ k = 0
|
|
|
|
+ for i in range(len(abar_ic)):
|
|
|
|
+ ab = np.around(abar_ic[i], 5)
|
|
|
|
+ if ab in np.around(abar_cs, 5):
|
|
|
|
+ idx, = np.nonzero(inverse == i)
|
|
|
|
+ kR = emanuele_data[idx, 2][emanuele_data[idx, 2] <= max_kappaR]
|
|
|
|
+ en = emanuele_data[idx, peak.emanuele_data_column][emanuele_data[idx, 1] <= max_kappaR]
|
|
sort = np.argsort(kR)
|
|
sort = np.argsort(kR)
|
|
- data_dict_ic[ab] = np.stack((kR[sort], np.abs(en)[sort])).T
|
|
|
|
- data_dict_cs[ab] = np.stack((kappaR, np.abs(energy[k]))).T
|
|
|
|
|
|
+ if peak.log_y:
|
|
|
|
+ data_dict_ic[ab] = np.stack((kR[sort], np.abs(en)[sort])).T
|
|
|
|
+ data_dict_cs[ab] = np.stack((kappaR, np.abs(energy[k]))).T
|
|
|
|
+ else:
|
|
|
|
+ data_dict_ic[ab] = np.stack((kR[sort], en[sort])).T
|
|
|
|
+ data_dict_cs[ab] = np.stack((kappaR, energy[k])).T
|
|
k += 1
|
|
k += 1
|
|
|
|
|
|
|
|
+ return data_dict_ic, data_dict_cs
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def get_abar_energy_dicts(peak: Peak, params: ModelParams, emanuele_data: Array, a_bar: Array, kR_cs: list, max_abar: float = 0.8):
|
|
|
|
+
|
|
|
|
+ kR_ic, inverse = np.unique(emanuele_data[:, 2], return_inverse=True)
|
|
|
|
+
|
|
|
|
+ energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2),
|
|
|
|
+ peak.kappaR_axis_in_expansion)
|
|
|
|
+ energy = energy_fn(peak.ex1, peak.ex2, params)
|
|
|
|
+
|
|
|
|
+ data_dict_ic = {}
|
|
|
|
+ data_dict_cs = {}
|
|
|
|
+ k = 0
|
|
|
|
+ for i in range(len(kR_ic)):
|
|
|
|
+ kr = np.around(kR_ic[i], 5)
|
|
|
|
+ if kr in np.around(kR_cs, 5):
|
|
|
|
+ idx, = np.nonzero(inverse == i)
|
|
|
|
+ abar = emanuele_data[idx, 1][emanuele_data[idx, 1] <= max_abar]
|
|
|
|
+ en = emanuele_data[idx, peak.emanuele_data_column][emanuele_data[idx, 1] <= max_abar]
|
|
|
|
+ sort = np.argsort(abar)
|
|
|
|
+ if peak.log_y:
|
|
|
|
+ data_dict_ic[kr] = np.stack((abar[sort], np.abs(en)[sort])).T
|
|
|
|
+ data_dict_cs[kr] = np.stack((a_bar, np.abs(energy[k]))).T
|
|
|
|
+ else:
|
|
|
|
+ data_dict_ic[kr] = np.stack((abar[sort], en[sort])).T
|
|
|
|
+ data_dict_cs[kr] = np.stack((a_bar, energy[k])).T
|
|
|
|
+ k += 1
|
|
|
|
+
|
|
|
|
+ return data_dict_ic, data_dict_cs
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def save_data(data_dict_ic, data_dict_cs, a_bar: list):
|
|
if save_data:
|
|
if save_data:
|
|
ic_save = {str(key): val for key, val in data_dict_ic.items()}
|
|
ic_save = {str(key): val for key, val in data_dict_ic.items()}
|
|
cs_save = {str(key): val for key, val in data_dict_cs.items()}
|
|
cs_save = {str(key): val for key, val in data_dict_cs.items()}
|
|
@@ -105,20 +156,57 @@ def IC_peak_energy_plot(config_data: dict,
|
|
np.savez(Path(config_data["figure_data"]).joinpath("fig_11_IC.npz"), **ic_save)
|
|
np.savez(Path(config_data["figure_data"]).joinpath("fig_11_IC.npz"), **ic_save)
|
|
np.savez(Path(config_data["figure_data"]).joinpath("fig_11_CS.npz"), **cs_save)
|
|
np.savez(Path(config_data["figure_data"]).joinpath("fig_11_CS.npz"), **cs_save)
|
|
|
|
|
|
|
|
+
|
|
|
|
+def IC_peak_energy_plot(config_data: dict,
|
|
|
|
+ a_bar: list,
|
|
|
|
+ which: RotConfig,
|
|
|
|
+ min_kappaR: float = 0.01,
|
|
|
|
+ max_kappaR: float = 50.,
|
|
|
|
+ R: float = 150,
|
|
|
|
+ save_as: Path = None,
|
|
|
|
+ save_data: bool = False,
|
|
|
|
+ quad_correction: bool = False,
|
|
|
|
+ log_y: bool = True):
|
|
|
|
+
|
|
|
|
+ # em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
+ em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_4_PANELS_BDF"))
|
|
|
|
+ em_data = np.load(em_data_path.joinpath("newpair_energy.npz"))
|
|
|
|
+ data = em_data['fixA']
|
|
|
|
+
|
|
|
|
+ num = 100 if which == 'sep' else 30
|
|
|
|
+ kappaR = np.geomspace(min_kappaR, max_kappaR, num)
|
|
|
|
+ params = ModelParams(R=R, kappaR=kappaR)
|
|
|
|
+
|
|
|
|
+ ex = expansion.MappedExpansionQuad(np.array(a_bar)[:, None], params.kappaR[None, :], 0.001, l_max=20)
|
|
|
|
+
|
|
|
|
+ if which == 'ep':
|
|
|
|
+ peak = PeakEP(ex, log_y, kappaR_axis_in_expansion=1)
|
|
|
|
+ elif which == 'pp':
|
|
|
|
+ peak = PeakPP(ex, log_y, kappaR_axis_in_expansion=1)
|
|
|
|
+ elif which == 'sep':
|
|
|
|
+ peak = PeakSEP(ex, log_y, kappaR_axis_in_expansion=1)
|
|
|
|
+ else:
|
|
|
|
+ raise ValueError
|
|
|
|
+
|
|
|
|
+ data_dict_ic, data_dict_cs = get_kappaR_energy_dicts(peak, params, data, kappaR, a_bar, max_kappaR)
|
|
|
|
+
|
|
colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
|
|
|
|
- fig, ax = plt.subplots()
|
|
|
|
|
|
+ fig, ax = plt.subplots(figsize=(4.25, 3))
|
|
for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
|
|
for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
|
|
current_color = next(colors)
|
|
current_color = next(colors)
|
|
ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
|
|
ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
|
|
ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
|
|
ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
|
|
- ax.legend(fontsize=14, ncol=2)
|
|
|
|
|
|
+ ax.legend(fontsize=14, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
|
|
|
|
+ bbox_to_anchor=(0.42, 0.42),
|
|
|
|
+ # bbox_to_anchor=(0.42, 0.9)
|
|
|
|
+ )
|
|
ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
ax.set_xlabel(r'$\kappa R$', fontsize=15)
|
|
ax.set_xlabel(r'$\kappa R$', fontsize=15)
|
|
|
|
|
|
- y_label = r'$U_{pp}$' if which == 'pp' else r'$|U_{ep}|$'
|
|
|
|
- ax.set_ylabel(y_label, fontsize=15)
|
|
|
|
- ax.set_yscale('log')
|
|
|
|
|
|
+ ax.set_ylabel(peak.y_label, fontsize=15)
|
|
|
|
+ if log_y:
|
|
|
|
+ ax.set_yscale('log')
|
|
ax.set_xscale('log')
|
|
ax.set_xscale('log')
|
|
plt.tight_layout()
|
|
plt.tight_layout()
|
|
if save_as is not None:
|
|
if save_as is not None:
|
|
@@ -126,39 +214,272 @@ def IC_peak_energy_plot(config_data: dict,
|
|
plt.show()
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
-def extra_correction(a_bar, kappaR):
|
|
|
|
- y = a_bar * kappaR
|
|
|
|
- # return (kappaR ** 2 * a_bar ** 4 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR) *
|
|
|
|
- # np.sinh(y) / (-3 * y * np.cosh(y) + (3 + y ** 2) * np.sinh(y)))
|
|
|
|
- return (a_bar ** 2 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR)
|
|
|
|
- * functions.sph_bessel_i(0, y) / functions.sph_bessel_i(2, y))
|
|
|
|
|
|
+def IC_peak_energy_abar_plot(config_data: dict,
|
|
|
|
+ kappaR: list,
|
|
|
|
+ which: RotConfig,
|
|
|
|
+ min_abar: float = 0.01,
|
|
|
|
+ max_abar: float = 50.,
|
|
|
|
+ R: float = 150,
|
|
|
|
+ save_as: Path = None,
|
|
|
|
+ save_data: bool = False,
|
|
|
|
+ quad_correction: bool = False,
|
|
|
|
+ log_y: bool = True):
|
|
|
|
+
|
|
|
|
+ # em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
+ em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_4_PANELS_BDF"))
|
|
|
|
+ em_data = np.load(em_data_path.joinpath("newpair_energy.npz"))
|
|
|
|
+ data = em_data['fixA']
|
|
|
|
+
|
|
|
|
+ num = 100 if which == 'sep' else 30
|
|
|
|
+ a_bar = np.linspace(min_abar, max_abar, num)
|
|
|
|
+ params = ModelParams(R=R, kappaR=np.array(kappaR))
|
|
|
|
+
|
|
|
|
+ ex = expansion.MappedExpansionQuad(np.array(a_bar)[None, :], params.kappaR[:, None], 0.001, l_max=20)
|
|
|
|
+
|
|
|
|
+ if which == 'ep':
|
|
|
|
+ peak = PeakEP(ex, log_y, kappaR_axis_in_expansion=0)
|
|
|
|
+ elif which == 'pp':
|
|
|
|
+ peak = PeakPP(ex, log_y, kappaR_axis_in_expansion=0)
|
|
|
|
+ elif which == 'sep':
|
|
|
|
+ peak = PeakSEP(ex, log_y, kappaR_axis_in_expansion=0)
|
|
|
|
+ else:
|
|
|
|
+ raise ValueError
|
|
|
|
+
|
|
|
|
+ data_dict_ic, data_dict_cs = get_abar_energy_dicts(peak, params, data, a_bar, kappaR, max_abar)
|
|
|
|
+
|
|
|
|
+ colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
|
|
+
|
|
|
|
+ fig, ax = plt.subplots(figsize=(4.25, 3))
|
|
|
|
+ for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
|
|
|
|
+ current_color = next(colors)
|
|
|
|
+ ax.plot(data1[:, 0], data1[:, 1], label=rf'$\kappa R = {key:.2f}$', c=current_color)
|
|
|
|
+ ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
|
|
|
|
+ ax.legend(fontsize=14, ncol=1, frameon=False, handlelength=0.7,
|
|
|
|
+ # loc='lower right',
|
|
|
|
+ # bbox_to_anchor=(0.42, 0.42),
|
|
|
|
+ # bbox_to_anchor=(0.42, 0.9)
|
|
|
|
+ )
|
|
|
|
+ ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
|
|
+ ax.set_xlabel(r'$\bar a$', fontsize=15)
|
|
|
|
+
|
|
|
|
+ ax.set_ylabel(peak.y_label, fontsize=15)
|
|
|
|
+ if log_y:
|
|
|
|
+ ax.set_yscale('log')
|
|
|
|
+ # ax.set_xscale('log')
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ if save_as is not None:
|
|
|
|
+ plt.savefig(save_as, dpi=600)
|
|
|
|
+ plt.show()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def IC_peak_energy_charge_plot(config_data: dict,
|
|
|
|
+ a_bar: list,
|
|
|
|
+ which: RotConfig,
|
|
|
|
+ max_kappaR: float = 30.,
|
|
|
|
+ R: float = 150,
|
|
|
|
+ save_as: Path = None,
|
|
|
|
+ save_data: bool = False,
|
|
|
|
+ quad_correction: bool = False,
|
|
|
|
+ log_y: bool = False):
|
|
|
|
+
|
|
|
|
+ # em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
+ em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_4_PANELS_BDF"))
|
|
|
|
+ em_data = np.load(em_data_path.joinpath("newpair_energy.npz"))
|
|
|
|
+ data = em_data['changeZc']
|
|
|
|
+
|
|
|
|
+ params = ModelParams(R=R, kappaR=3)
|
|
|
|
+ sigma0 = np.linspace(-0.0003, 0.0003, 300)
|
|
|
|
+ sigma_tilde = 0.001
|
|
|
|
+
|
|
|
|
+ ex = expansion.MappedExpansionQuad(np.array(a_bar), kappaR=3, sigma0=sigma0, l_max=20, sigma_tilde=sigma_tilde)
|
|
|
|
+
|
|
|
|
+ if which == 'ep':
|
|
|
|
+ peak = PeakEP(ex, log_y)
|
|
|
|
+ elif which == 'pp':
|
|
|
|
+ peak = PeakPP(ex, log_y)
|
|
|
|
+ elif which == 'sep':
|
|
|
|
+ peak = PeakSEP(ex, log_y)
|
|
|
|
+ else:
|
|
|
|
+ raise ValueError
|
|
|
|
+
|
|
|
|
+ data_dict_ic, data_dict_cs = get_charge_energy_dicts(peak, params, data, sigma0, a_bar, sigma_tilde)
|
|
|
|
+
|
|
|
|
+ colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
|
|
+
|
|
|
|
+ fig, ax = plt.subplots(figsize=(4.25, 3))
|
|
|
|
+ for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
|
|
|
|
+ current_color = next(colors)
|
|
|
|
+ ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
|
|
|
|
+ ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
|
|
|
|
+ ax.legend(fontsize=14, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
|
|
|
|
+ # bbox_to_anchor=(0.42, 0.95),
|
|
|
|
+ # bbox_to_anchor=(0.7, 1),
|
|
|
|
+ bbox_to_anchor=(0.42, 1),
|
|
|
|
+ )
|
|
|
|
+ ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
|
|
+ ax.set_xlabel(r'$\eta$', fontsize=15)
|
|
|
|
+
|
|
|
|
+ ax.set_ylabel(peak.y_label, fontsize=15)
|
|
|
|
+ if log_y:
|
|
|
|
+ ax.set_yscale('log')
|
|
|
|
+ # ax.set_xscale('log')
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ if save_as is not None:
|
|
|
|
+ plt.savefig(save_as, dpi=300)
|
|
|
|
+ plt.show()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def IC_peak_energy_kappaR_combined_plot(config_data: dict,
|
|
|
|
+ a_bar: list,
|
|
|
|
+ R: float = 150,
|
|
|
|
+ save_as: Path = None,
|
|
|
|
+ min_kappaR: float = 0.01,
|
|
|
|
+ max_kappaR: float = 50.,
|
|
|
|
+ ):
|
|
|
|
+
|
|
|
|
+ # em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
+ em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_4_PANELS_BDF"))
|
|
|
|
+ em_data = np.load(em_data_path.joinpath("newpair_energy.npz"))
|
|
|
|
+ data = em_data['fixA']
|
|
|
|
+
|
|
|
|
+ num = 50
|
|
|
|
+ kappaR = np.geomspace(min_kappaR, max_kappaR, num)
|
|
|
|
+ params = ModelParams(R=R, kappaR=kappaR)
|
|
|
|
+
|
|
|
|
+ ex = expansion.MappedExpansionQuad(np.sort(np.array(a_bar))[:, None], # sorting necessary as it is also in energy_dicts()
|
|
|
|
+ params.kappaR[None, :], 0.001, l_max=20)
|
|
|
|
+
|
|
|
|
+ peak_ep = PeakEP(ex, log_y=True, kappaR_axis_in_expansion=1)
|
|
|
|
+ peak_pp = PeakPP(ex, log_y=True, kappaR_axis_in_expansion=1)
|
|
|
|
+ peak_sep = PeakSEP(ex, log_y=False, kappaR_axis_in_expansion=1)
|
|
|
|
+ peaks = [peak_ep, peak_pp, peak_sep]
|
|
|
|
+
|
|
|
|
+ data_ic = []
|
|
|
|
+ data_cs = []
|
|
|
|
+ for peak in peaks:
|
|
|
|
+ dict_ic, dict_cs = get_kappaR_energy_dicts(peak, params, data, kappaR, a_bar, max_kappaR)
|
|
|
|
+ data_ic.append(dict_ic)
|
|
|
|
+ data_cs.append(dict_cs)
|
|
|
|
+
|
|
|
|
+ legend_coords = [(0.58, 0.45), (0.58, 0.43), (0.58, 0.9)]
|
|
|
|
+
|
|
|
|
+ fig, axs = plt.subplots(3, 1, figsize=(3, 7.8))
|
|
|
|
+ for ax, data_dict_ic, data_dict_cs, peak, lc in zip(axs, data_ic, data_cs, peaks, legend_coords):
|
|
|
|
+ colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
|
|
+ for ab in a_bar:
|
|
|
|
+ key = np.around(ab, 5)
|
|
|
|
+ current_color = next(colors)
|
|
|
|
+ ax.plot(data_dict_ic[key][:, 0], data_dict_ic[key][:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
|
|
|
|
+ ax.plot(data_dict_cs[key][:, 0], data_dict_cs[key][:, 1], ls='--', c=current_color)
|
|
|
|
+ ax.axvline(x=10, c='k', ls=':')
|
|
|
|
+ ax.axvline(x=3, c='k', ls=':')
|
|
|
|
+ ax.axvline(x=1, c='k', ls=':')
|
|
|
|
+ ax.legend(fontsize=13, ncol=1, frameon=False, handlelength=0.7, loc='upper right', bbox_to_anchor=lc)
|
|
|
|
+ ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
|
|
+ # if ax == axs[-1]:
|
|
|
|
+ ax.set_xlabel(r'$\kappa R$', fontsize=15)
|
|
|
|
+
|
|
|
|
+ ax.set_ylabel(peak.y_label, fontsize=15)
|
|
|
|
+ if peak.log_y:
|
|
|
|
+ ax.set_yscale('log')
|
|
|
|
+ ax.set_xscale('log')
|
|
|
|
+ ax.yaxis.set_label_coords(-0.2, 0.5)
|
|
|
|
+ plt.subplots_adjust(left=0.3)
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ if save_as is not None:
|
|
|
|
+ plt.savefig(save_as, dpi=300)
|
|
|
|
+ plt.show()
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def IC_peak_energy_charge_combined_plot(config_data: dict,
|
|
|
|
+ a_bar: list,
|
|
|
|
+ R: float = 150,
|
|
|
|
+ save_as: Path = None,
|
|
|
|
+ log_y: bool = False):
|
|
|
|
+
|
|
|
|
+ # em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
|
|
|
|
+ em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_4_PANELS_BDF"))
|
|
|
|
+ em_data = np.load(em_data_path.joinpath("newpair_energy.npz"))
|
|
|
|
+ data = em_data['changeZc']
|
|
|
|
+
|
|
|
|
+ params = ModelParams(R=R, kappaR=3)
|
|
|
|
+ sigma0 = np.linspace(-0.0003, 0.0003, 300)
|
|
|
|
+ sigma_tilde = 0.001
|
|
|
|
+
|
|
|
|
+ ex = expansion.MappedExpansionQuad(np.sort(np.array(a_bar)), # sorting necessary as it is also in energy_dicts()
|
|
|
|
+ kappaR=3, sigma0=sigma0, l_max=20, sigma_tilde=sigma_tilde)
|
|
|
|
+
|
|
|
|
+ peak_ep = PeakEP(ex, log_y)
|
|
|
|
+ peak_pp = PeakPP(ex, log_y)
|
|
|
|
+ peak_sep = PeakSEP(ex, log_y)
|
|
|
|
+ peaks = [peak_ep, peak_pp, peak_sep]
|
|
|
|
+
|
|
|
|
+ data_ic = []
|
|
|
|
+ data_cs = []
|
|
|
|
+ for peak in peaks:
|
|
|
|
+ dict_ic, dict_cs = get_charge_energy_dicts(peak, params, data, sigma0, a_bar, sigma_tilde)
|
|
|
|
+ data_ic.append(dict_ic)
|
|
|
|
+ data_cs.append(dict_cs)
|
|
|
|
+
|
|
|
|
+ fig, axs = plt.subplots(3, 1, figsize=(3, 7.8))
|
|
|
|
+ for ax, data_dict_ic, data_dict_cs, peak in zip(axs, data_ic, data_cs, peaks):
|
|
|
|
+ colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
|
|
|
|
+ for ab in a_bar:
|
|
|
|
+ key = np.around(ab, 5)
|
|
|
|
+ current_color = next(colors)
|
|
|
|
+ ax.plot(data_dict_ic[key][:, 0], data_dict_ic[key][:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
|
|
|
|
+ ax.plot(data_dict_cs[key][:, 0], data_dict_cs[key][:, 1], ls='--', c=current_color)
|
|
|
|
+ ax.legend(fontsize=13, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
|
|
|
|
+ bbox_to_anchor=(0.77, 1.03),
|
|
|
|
+ )
|
|
|
|
+ ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
|
|
|
|
+ # if ax == axs[-1]:
|
|
|
|
+ ax.set_xlabel(r'$\eta$', fontsize=15)
|
|
|
|
+
|
|
|
|
+ ax.set_ylabel(peak.y_label, fontsize=15)
|
|
|
|
+ if peak.log_y:
|
|
|
|
+ ax.set_yscale('log')
|
|
|
|
+ # ax.set_xscale('log')
|
|
|
|
+ ax.yaxis.set_label_coords(-0.2, 0.5)
|
|
|
|
+ plt.subplots_adjust(left=0.3)
|
|
|
|
+ plt.tight_layout()
|
|
|
|
+ if save_as is not None:
|
|
|
|
+ plt.savefig(save_as, dpi=300)
|
|
|
|
+ plt.show()
|
|
|
|
|
|
|
|
|
|
def main():
|
|
def main():
|
|
with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
|
|
with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
|
|
config_data = json.load(config_file)
|
|
config_data = json.load(config_file)
|
|
|
|
|
|
- # kappaR = np.arange(0.5, 50, 0.1)
|
|
|
|
- # a_bar = np.arange(0.2, 0.8, 0.2)
|
|
|
|
- # peak_energy_plot(kappaR, a_bar, which='pp',
|
|
|
|
- # # save_as=Path('/home/andraz/ChargedShells/Figures/nonmonotonicity_check_ep.pdf')
|
|
|
|
- # )
|
|
|
|
|
|
+ # a_bar = [0.2, 0.5, 0.8]
|
|
|
|
+ # IC_peak_energy_plot(config_data, a_bar=a_bar, which='ep', max_kappaR=50,
|
|
|
|
+ # # save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/peak_pp_kappaR.png'),
|
|
|
|
+ # save_data=False,
|
|
|
|
+ # quad_correction=False,
|
|
|
|
+ # log_y=True
|
|
|
|
+ # )
|
|
|
|
+ # IC_peak_energy_kappaR_combined_plot(config_data, a_bar,
|
|
|
|
+ # save_as=Path(
|
|
|
|
+ # '/home/andraz/ChargedShells/Figures/final_figures/peak_combined_kappaR.png')
|
|
|
|
+ # )
|
|
|
|
|
|
- a_bar = [0.2, 0.32, 0.52, 0.8]
|
|
|
|
- # a_bar = list(np.arange(0.2, 0.81, 0.04))
|
|
|
|
- IC_peak_energy_plot(config_data, a_bar=a_bar, which='pp', max_kappaR=50,
|
|
|
|
- save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/both_nonmonotonicity_check_pp.png'),
|
|
|
|
|
|
+ # a_bar = [0.1, 0.2, 0.3]
|
|
|
|
+ # IC_peak_energy_charge_plot(config_data, a_bar=a_bar, which='sep',
|
|
|
|
+ # # save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/peak_sep_charge.png'),
|
|
|
|
+ # )
|
|
|
|
+ # IC_peak_energy_charge_combined_plot(config_data, a_bar,
|
|
|
|
+ # save_as=Path('/home/andraz/ChargedShells/Figures/final_figures/peak_combined_charge.png')
|
|
|
|
+ # )
|
|
|
|
+
|
|
|
|
+ kappaR = [0.01, 3.02407, 30]
|
|
|
|
+ IC_peak_energy_abar_plot(config_data, kappaR=kappaR, which='sep', min_abar=0.2, max_abar=0.8,
|
|
|
|
+ save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/peak_sep_abar.png'),
|
|
save_data=False,
|
|
save_data=False,
|
|
- quad_correction=False
|
|
|
|
|
|
+ quad_correction=False,
|
|
|
|
+ log_y=False
|
|
)
|
|
)
|
|
|
|
|
|
- # kr = np.linspace(0.1, 100, 1000)
|
|
|
|
- # for ab in [0.2, 0.32, 0.52, 0.8]:
|
|
|
|
- # plt.plot(kr, extra_correction(ab, kr))
|
|
|
|
- # plt.xscale('log')
|
|
|
|
- # plt.yscale('log')
|
|
|
|
- # plt.show()
|
|
|
|
-
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if __name__ == '__main__':
|
|
|
|
|