import matplotlib.pyplot as plt from charged_shells import expansion, interactions, mapping, functions from charged_shells.parameters import ModelParams import numpy as np from typing import Literal from pathlib import Path from functools import partial import json from itertools import cycle Array = np.ndarray Expansion = expansion.Expansion RotConfig = Literal['ep', 'pp'] def peak_energy_plot(kappaR: Array, a_bar: Array, which: Literal['ep', 'pp'], R: float = 150, dist: float = 2., l_max=20, save_as: Path = None): params = ModelParams(R=R, kappaR=kappaR) ex1 = expansion.MappedExpansionQuad(a_bar[:, None], params.kappaR[None, :], 0.001, l_max=l_max) ex2 = ex1.clone() if which == 'ep': ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0) energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist), 1) energy = energy_fn(ex1, ex2, params) fig, ax = plt.subplots() for en, ab in zip(energy, a_bar): ax.plot(kappaR, en / en[0], label=rf'$\bar a = {ab:.1f}$') # ax.plot(kappaR, en, label=rf'$\bar a = {ab:.1f}$') ax.legend(fontsize=12) ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15) ax.set_xlabel(r'$\kappa R$', fontsize=15) ax.set_ylabel(rf'$\bar V$', fontsize=15) plt.tight_layout() if save_as is not None: plt.savefig(save_as, dpi=600) plt.show() def IC_peak_energy_plot(config_data: dict, a_bar: list, which: RotConfig, max_kappaR: float = 30., R: float = 150, save_as: Path = None, save_data: bool = False, quad_correction: bool = False): em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11")) em_data = np.load(em_data_path.joinpath("pair_energy_fig11.npz")) data = em_data['fixA'] if which == 'ep': column_idx = 4 elif which == 'pp': column_idx = 3 else: raise ValueError abar, inverse, counts = np.unique(data[:, 1], return_counts=True, return_inverse=True) all_kappaR = np.unique(data[:, 2]) kappaR = np.geomspace(np.min(all_kappaR), max_kappaR, 30) params = ModelParams(R=R, kappaR=kappaR) ex1 = expansion.MappedExpansionQuad(np.array(a_bar)[:, None], params.kappaR[None, :], 0.001, l_max=20) ex2 = ex1.clone() if which == 'ep': ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0) energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2), 1) energy = energy_fn(ex1, ex2, params) data_dict_ic = {} data_dict_cs = {} k = 0 for i in range(len(abar)): ab = np.around(abar[i], 5) if ab in np.around(a_bar, 5): idx, = np.nonzero(inverse == i) kR = data[idx, 2][data[idx, 2] <= max_kappaR] en = data[idx, column_idx][data[idx, 2] <= max_kappaR] if quad_correction: en *= extra_correction(ab, kR) sort = np.argsort(kR) data_dict_ic[ab] = np.stack((kR[sort], np.abs(en)[sort])).T data_dict_cs[ab] = np.stack((kappaR, np.abs(energy[k]))).T k += 1 if save_data: ic_save = {str(key): val for key, val in data_dict_ic.items()} cs_save = {str(key): val for key, val in data_dict_cs.items()} ic_save['abar'] = a_bar cs_save['abar'] = a_bar with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file: config_data = json.load(config_file) np.savez(Path(config_data["figure_data"]).joinpath("fig_11_IC.npz"), **ic_save) np.savez(Path(config_data["figure_data"]).joinpath("fig_11_CS.npz"), **cs_save) colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color']) fig, ax = plt.subplots() for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()): current_color = next(colors) ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color) ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color) ax.legend(fontsize=14, ncol=2) ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15) ax.set_xlabel(r'$\kappa R$', fontsize=15) y_label = r'$U_{pp}$' if which == 'pp' else r'$|U_{ep}|$' ax.set_ylabel(y_label, fontsize=15) ax.set_yscale('log') ax.set_xscale('log') plt.tight_layout() if save_as is not None: plt.savefig(save_as, dpi=600) plt.show() def extra_correction(a_bar, kappaR): y = a_bar * kappaR # return (kappaR ** 2 * a_bar ** 4 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR) * # np.sinh(y) / (-3 * y * np.cosh(y) + (3 + y ** 2) * np.sinh(y))) return (a_bar ** 2 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR) * functions.sph_bessel_i(0, y) / functions.sph_bessel_i(2, y)) def main(): with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file: config_data = json.load(config_file) # kappaR = np.arange(0.5, 50, 0.1) # a_bar = np.arange(0.2, 0.8, 0.2) # peak_energy_plot(kappaR, a_bar, which='pp', # # save_as=Path('/home/andraz/ChargedShells/Figures/nonmonotonicity_check_ep.pdf') # ) a_bar = [0.2, 0.32, 0.52, 0.8] # a_bar = list(np.arange(0.2, 0.81, 0.04)) IC_peak_energy_plot(config_data, a_bar=a_bar, which='pp', max_kappaR=50, save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/both_nonmonotonicity_check_pp.png'), save_data=False, quad_correction=False ) # kr = np.linspace(0.1, 100, 1000) # for ab in [0.2, 0.32, 0.52, 0.8]: # plt.plot(kr, extra_correction(ab, kr)) # plt.xscale('log') # plt.yscale('log') # plt.show() if __name__ == '__main__': main()