from charged_shells import expansion, parameters import charged_shells.functions as fn from py3nj import wigner3j import numpy as np from typing import Literal import charged_shells.units_and_constants as uc Array = np.ndarray Expansion = expansion.Expansion ModelParams = parameters.ModelParams EnergyUnit = Literal['kT', 'eV', 'J'] def energy_units(units: EnergyUnit, params: ModelParams) -> float: match units: case 'eV': # return 1 / (uc.CONSTANTS.e0 * uc.UNITS.voltage) return 1. case 'kT': return 1 / (params.temperature * uc.CONSTANTS.Boltzmann) case 'J': return uc.UNITS.energy def charged_shell_energy(ex1: Expansion, ex2: Expansion, params: ModelParams, dist: float = 2, units: EnergyUnit = 'kT', chunk_size: int = 1000): ex1, ex2 = expansion.expansions_to_common_l(ex1, ex2) dist = dist * params.R full_l_array, full_m_array = ex1.lm_arrays # determine indices of relevant elements in the sum indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :]) flat_l = full_l_array[indices_l] flat_p = full_l_array[indices_p] flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p] relevant_pairs, = np.nonzero(flat_l >= flat_p) flat_l = flat_l[relevant_pairs] flat_p = flat_p[relevant_pairs] flat_m = flat_m[relevant_pairs] indices_l = indices_l[relevant_pairs] indices_p = indices_p[relevant_pairs] charge_factor = np.real(ex1.coefs[..., indices_l] * np.conj(ex2.coefs[..., indices_p]) + (-1) ** (flat_l + flat_p) * ex1.coefs[..., indices_p] * np.conj(ex2.coefs[..., indices_l])) all_s_array = np.arange(2 * ex1.max_l + 1) bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist) # additional selection that excludes terms where Wigner 3j symbols are 0 by definition s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None] s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :]) indices_lpm_all, indices_s_all = np.nonzero(s_bool1 * s_bool2) # indices array can get really large (a lot of combinations) so we split the calculation into chunks to preserve RAM # interestingly, this also leads to performance improvements if chunks are still large enough if chunk_size is None: chunk_size = len(indices_lpm_all) num_sections = np.ceil(len(indices_lpm_all) / chunk_size) energy = 0 for indices_lpm, indices_s in zip(np.array_split(indices_lpm_all, num_sections), np.array_split(indices_s_all, num_sections)): l_vals = flat_l[indices_lpm] p_vals = flat_p[indices_lpm] m_vals = flat_m[indices_lpm] s_vals = all_s_array[indices_s] bessel_vals = bessels[indices_s] # While all other arrays are 1D, this one can have extra leading axes corresponding to leading dimensions # of expansion coefficients. The last dimension is the same as other arrays. charge_vals = charge_factor[..., indices_lpm] lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1)) # the same combination of l, s, and p is repeated many times _, unique_indices1, inverse1 = np.unique(np.stack((l_vals, s_vals, p_vals)), axis=1, return_inverse=True, return_index=True) wigner1 = wigner3j(2 * l_vals[unique_indices1], 2 * s_vals[unique_indices1], 2 * p_vals[unique_indices1], 0, 0, 0)[inverse1] # all the combinations (l, s, p, m) are unique wigner2 = wigner3j(2 * l_vals, 2 * s_vals, 2 * p_vals, -2 * m_vals, 0, 2 * m_vals) constants = params.R ** 2 / (params.kappa * params.epsilon * uc.CONSTANTS.epsilon0) * energy_units(units, params) C_vals = fn.interaction_coef_C(l_vals, p_vals, params.kappaR) lspm_vals = C_vals * (-1) ** (l_vals + m_vals) * lps_terms * bessel_vals * wigner1 * wigner2 broadcasted_lspm_vals = np.broadcast_to(lspm_vals, charge_vals.shape) rescale_at_equal_lp = np.where(l_vals == p_vals, 0.5, 1) energy += constants * np.sum(rescale_at_equal_lp * broadcasted_lspm_vals * charge_vals, axis=-1) return energy