from charged_shells import expansion, functions as fn, potentials, patch_size import numpy as np from charged_shells.parameters import ModelParams import matplotlib.pyplot as plt import scipy.special as sps from pathlib import Path def point_to_gauss_map(sigma_m, a_bar, lbd, params: ModelParams): return (sigma_m * fn.coefficient_Cim(2, params.kappaR) / fn.coefficient_Cpm(2, params.kappaR) * np.sinh(lbd) / (lbd * fn.sph_bessel_i(2, lbd)) * a_bar ** 2) def point_to_cap_map(sigma_m, a_bar, theta0, params: ModelParams): return (sigma_m * 10 * fn.coefficient_Cim(2, params.kappaR) / fn.coefficient_Cpm(2, params.kappaR) * a_bar ** 2 / (sps.eval_legendre(1, np.cos(theta0)) - sps.eval_legendre(3, np.cos(theta0)))) if __name__ == '__main__': target_patch_size = 0.92 params = ModelParams(R=150, kappaR=3) sigma_m = 0.001 def fn1(x): return expansion.MappedExpansionQuad(a_bar=x, kappaR=params.kappaR, sigma_tilde=sigma_m, l_max=30) def fn2(x): return expansion.GaussianCharges(lambda_k=x, omega_k=np.array([[0, 0], [np.pi, 0]]), sigma1=0.001, l_max=30) def fn3(x): return expansion.SphericalCap(theta0_k=x, sigma1=0.001, l_max=50, omega_k=np.array([[0, 0], [np.pi, 0]])) a_bar = patch_size.inverse_potential_patch_size(target_patch_size, fn1, 0.5, params) lbd = patch_size.inverse_potential_patch_size(target_patch_size, fn2, 5, params) theta0 = patch_size.inverse_potential_patch_size(target_patch_size, fn3, 0.5, params) ex_point = expansion.MappedExpansionQuad(a_bar=a_bar, kappaR=params.kappaR, sigma_tilde=sigma_m, l_max=30) gauss_sigma = point_to_gauss_map(sigma_m, a_bar, lbd, params) ex_gauss = expansion.GaussianCharges(lambda_k=lbd, omega_k=np.array([[0, 0], [np.pi, 0]]), sigma1=gauss_sigma, l_max=30) cap_sigma = point_to_cap_map(sigma_m, a_bar, theta0, params) ex_cap = expansion.SphericalCap(theta0_k=theta0, sigma1=cap_sigma, omega_k=np.array([[0, 0], [np.pi, 0]]), l_max=30) theta = np.linspace(0, np.pi, 1001) phi = 0. dist = 1 potential_ic = potentials.inverse_patchy_particle_potential(theta, dist, a_bar, -2 * sigma_m, (sigma_m, sigma_m), params, 30) potential1 = potentials.charged_shell_potential(theta, phi, dist, ex_point, params) potential2 = potentials.charged_shell_potential(theta, phi, dist, ex_gauss, params) potential3 = potentials.charged_shell_potential(theta, phi, dist, ex_cap, params) # print(potential.shape) # print(potential) # expansion.plot_theta_profile_multiple([ex_point, ex_gauss, ex_cap], ['IC', 'Gauss', 'cap'], num=1000) fig, ax = plt.subplots() ax.scatter(theta[::50], 1000 * potential_ic.T[::50], marker='o', label='ICi', facecolors='none', edgecolors='tab:red') ax.plot(theta, 1000 * potential1.T, label='CSp - mapped', linewidth=2) # ax.plot(theta, potential_ic.T, label='IC', ls=':', linewidth=2, marker='o', markevery=50, mfc='none') ax.plot(theta, 1000 * potential2.T, label='CSp - Gauss', linewidth=2, ls='--') ax.plot(theta, 1000 * potential3.T, label='CSp - caps', linewidth=2, ls='--') ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12) ax.set_xlabel(r'$\theta$', fontsize=15) ax.set_ylabel(r'$\phi$ [mV]', fontsize=15) custom_ticks = [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4, np.pi] custom_labels = ['0', r'$\pi/4$', r'$\pi/2$', r'$3\pi/4$', r'$\pi$'] plt.axhline(y=0, color='black', linestyle=':') plt.axvline(x=target_patch_size, color='black', linestyle=':') plt.xticks(custom_ticks, custom_labels, fontsize=13) plt.legend(fontsize=12) plt.tight_layout() plt.savefig(Path("/home/andraz/ChargedShells/Figures/potential_shape_comparison.pdf"), dpi=300) plt.show() # path_comparison = rotational_path.PathExpansionComparison([ex_point, ex_gauss, ex_cap], # path_plot.QuadPath, # dist=2, # params=params) # path_comparison.plot(['IC', 'Gauss', 'cap'], # save_as=Path("/home/andraz/ChargedShells/Figures/energy_shape_comparison_kR1.png"))