import numpy as np from dataclasses import dataclass from functools import cached_property import functions as fn Array = np.ndarray class InvalidExpansion(Exception): pass @dataclass class Expansion: """Generic class for storing surface charge expansion coefficients.""" l_array: Array coeffs: Array def __post_init__(self): """Validation of the given expansion.""" if len(self.coeffs) != np.sum(2 * self.l_array + 1): raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.') if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array): raise InvalidExpansion('Array of l values should be unique and sorted.') @property def max_l(self) -> int: return max(self.l_array) @cached_property def lm_arrays(self) -> (Array, Array): """Return l and m arrays containing all (l, m) pairs.""" all_m_list = [] for l in self.l_array: for i in range(2 * l + 1): all_m_list.append(-l + i) return np.repeat(self.l_array, 2 * self.l_array + 1), np.array(all_m_list) def repeat_over_m(self, arr: Array, axis=0): if not arr.shape[axis] == len(self.l_array): raise ValueError('Array length should be equal to the number of l in the expansion.') return np.repeat(arr, 2 * self.l_array + 1, axis=axis) def rot_sym_expansion(l_array: Array, coeffs: Array) -> Array: """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0.""" full_coeffs = np.zeros(np.sum(2 * l_array + 1)) full_coeffs[np.cumsum(2 * l_array + 1) - l_array - 1] = coeffs return full_coeffs class Expansion24(Expansion): def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.): l_array = np.array([0, 2, 4]) coeffs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4])) super().__init__(l_array, coeffs) class MappedExpansion(Expansion): def __init__(self, a_bar: float, kappaR: float, sigma_m: float, max_l: int = 20, sigma0: float = 0): l_array = np.array([l for l in range(max_l + 1) if l % 2 == 0]) coeffs = (2 * sigma_m * fn.coeff_C_diff(l_array, kappaR) * np.sqrt(4 * np.pi * (2 * l_array + 1)) * np.power(a_bar, l_array)) coeffs[0] = sigma0 coeffs = rot_sym_expansion(l_array, coeffs) super().__init__(l_array, coeffs) if __name__ == '__main__': ex = MappedExpansion(0.44, 3, 1, 10) print(ex.coeffs)