import expansion import parameters import functions as fn import numpy as np from py3nj import wigner3j import time import matplotlib.pyplot as plt Array = np.ndarray Expansion = expansion.Expansion ModelParams = parameters.ModelParams # def prefactor(R: float, kappaR: float, c0: float): # return R * kappaR * 1e4 / (12.04 * c0) # # # def c0(R: float, kappaR: float): # return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2) def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion): common_l_array = np.union1d(ex1.l_array, ex2.l_array) missing_l1 = np.setdiff1d(common_l_array, ex1.l_array, assume_unique=True) missing_l2 = np.setdiff1d(common_l_array, ex2.l_array, assume_unique=True) fill_1 = np.zeros(np.sum(2 * missing_l1 + 1)) fill_2 = np.zeros(np.sum(2 * missing_l2 + 1)) full_l_array1, _ = ex1.lm_arrays full_l_array2, _ = ex2.lm_arrays # we search for where to place missing coeffs with the help of a boolean array and argmax function bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0 bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0 # if all elements of bool are false, i.e. missing_l > all existing_l, additional l values come to the end indices1 = np.where(np.any(bool1, axis=0), np.argmax(bool1, axis=0), full_l_array1.shape[0]) indices2 = np.where(np.any(bool2, axis=0), np.argmax(bool2, axis=0), full_l_array2.shape[0]) new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1) new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2) return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2) def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, params: ModelParams): ex1, ex2 = expansions_to_common_l(ex1, ex2) full_l_array, full_m_array = ex1.lm_arrays coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], params.kappaR) full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0) charge_factor = np.real(ex1.coeffs[:, None] * np.conj(ex2.coeffs[None, :]) + (-1) ** (full_l_array[:, None] + full_l_array[None, :]) * ex1.coeffs[None, :] * ex1.coeffs[:, None]) indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :]) flat_l = full_l_array[indices_l] flat_p = full_l_array[indices_p] flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p] all_s_array = np.arange(2 * ex1.max_l + 1) bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist) s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None] s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :]) indices_lpm, indices_s = np.nonzero(s_bool1 * s_bool2) l_vals = flat_l[indices_lpm] p_vals = flat_p[indices_lpm] m_vals = flat_m[indices_lpm] C_vals = full_coefficient_C[indices_l, indices_p][indices_lpm] charge_vals = charge_factor[indices_l, indices_p][indices_lpm] s_vals = all_s_array[indices_s] bessel_vals = bessels[indices_s] lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1)) wigner1 = wigner3j(l_vals, s_vals, p_vals, 0, 0, 0) wigner2 = wigner3j(l_vals, s_vals, p_vals, -m_vals, 0, m_vals) return (params.R ** 2 / (params.kappa * params.epsilon * params.epsilon0) * np.sum(C_vals * (-1) ** (l_vals + m_vals) * charge_vals * lps_terms * bessel_vals * wigner1 * wigner2)) if __name__ == '__main__': params = ModelParams(1, 3, 1, 1) ex1 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5) ex2 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5) dist = 2. # ex1, ex2 = expansions_to_common_l(ex1, ex2) # print(ex1.coeffs) # print(ex2.coeffs) t0 = time.perf_counter() energy = charged_shell_energy(ex1, ex2, dist, params) t1 = time.perf_counter() print('energy: ', energy) print('time: ', t1 - t0) # plt.plot(energy) # plt.show()