from __future__ import annotations import numpy as np from dataclasses import dataclass from functools import cached_property import functions as fn import quaternionic import spherical import time import copy import matplotlib.pyplot as plt from typing import Callable, TypeVar from scipy.special import eval_legendre import plotly.graph_objects as go Array = np.ndarray Quaternion = quaternionic.array T = TypeVar('T') V = TypeVar('V') class InvalidExpansion(Exception): pass @dataclass class Expansion: """Generic class for storing surface charge expansion coefficients.""" l_array: Array coefs: Array _starting_coefs: Array = None # initialized with the __post_init__ method _rotations: Quaternion = Quaternion([1., 0., 0., 0.]) def __post_init__(self): if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1): raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.') if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array): raise InvalidExpansion('Array of l values should be unique and sorted.') self.coefs = self.coefs.astype(np.complex128) self._starting_coefs = np.copy(self.coefs) def __getitem__(self, item): return Expansion(self.l_array, self.coefs[item]) @property def max_l(self) -> int: return max(self.l_array) @property def shape(self): return self.coefs.shape[:-1] def flatten(self) -> Expansion: new_expansion = self.clone() # np.ndarray.flatten() also copies the array new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1]) new_expansion._rotations = new_expansion._rotations.reshape(-1, 4) return new_expansion def reshape(self, shape: tuple): self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],)) self._rotations = self._rotations.reshape(shape + (4,)) @cached_property def lm_arrays(self) -> (Array, Array): """Return l and m arrays containing all (l, m) pairs.""" return full_fm_arrays(self.l_array) def repeat_over_m(self, arr: Array, axis=0) -> Array: if not arr.shape[axis] == len(self.l_array): raise ValueError('Array length should be equal to the number of l in the expansion.') return np.repeat(arr, 2 * self.l_array + 1, axis=axis) def rotate(self, rotations: Quaternion, rotate_existing=False): # TODO: rotations are currently saved wrong if we start form existing coefficients not the og ones self._rotations = rotations coefs = self.coefs if rotate_existing else self._starting_coefs self.coefs = expansion_rotation(rotations, coefs, self.l_array) def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False): # TODO: additional care required on the convention used to transform euler angles to quaternions # TODO: might be off for a minus sign for each? angle !! R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma) self.rotate(R_euler, rotate_existing=rotate_existing) def charge_value(self, theta: Array | float, phi: Array | float): if not isinstance(theta, Array): theta = np.array([theta]) if not isinstance(phi, Array): phi = np.array([phi]) theta, phi = np.broadcast_arrays(theta, phi) full_l_array, full_m_array = self.lm_arrays return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None], full_m_array[:, None], theta[None, :], phi[None, :]), axis=-2))) def clone(self) -> Expansion: return copy.deepcopy(self) class Expansion24(Expansion): def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.): l_array = np.array([0, 2, 4]) coefs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4])) super().__init__(l_array, coefs) class MappedExpansionQuad(Expansion): def __init__(self, a_bar: Array | float, kappaR: Array | float, sigma_m: float, l_max: int = 20, sigma0: float = 0): a_bar, kappaR = np.broadcast_arrays(a_bar, kappaR) l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0]) a_bar, kappaR, l_array_expanded = np.broadcast_arrays(a_bar[..., None], kappaR[..., None], l_array[None, :]) coefs = (2 * sigma_m * fn.coef_C_diff(l_array_expanded, kappaR) * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar, l_array_expanded)) coefs[..., 0] = sigma0 / np.sqrt(4 * np.pi) coefs = rot_sym_expansion(l_array, coefs) super().__init__(l_array, coefs) class GaussianCharges(Expansion): def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int, sigma0: float = 0, equal_charges: bool = True): omega_k = omega_k.reshape(-1, 2) if not isinstance(lambda_k, Array): lambda_k = np.array([lambda_k]) if equal_charges: if lambda_k.ndim > 1: raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}') lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T if lambda_k.shape[-1] != omega_k.shape[0]: raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.") lambda_k = lambda_k.reshape(-1, omega_k.shape[0]) l_array = np.arange(l_max + 1) full_l_array, full_m_array = full_fm_arrays(l_array) theta_k = omega_k[:, 0] phi_k = omega_k[:, 1] summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :]) * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :]) * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None], theta_k[None, None, :], phi_k[None, None, :]))) coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1)) coefs[..., 0] = sigma0 / np.sqrt(4 * np.pi) l_array, coefs = purge_unneeded_l(l_array, coefs) super().__init__(l_array, coefs) class SphericalCap(Expansion): def __init__(self, omega_k: Array, theta0_k: Array | float, sigma1: float, l_max: int, sigma0: float = 0, equal_sizes: bool = True): omega_k = omega_k.reshape(-1, 2) if not isinstance(theta0_k, Array): theta0_k = np.array(theta0_k) if equal_sizes: if theta0_k.ndim == 0: theta0_k = np.full(omega_k.shape[0], theta0_k) elif theta0_k.ndim == 1: theta0_k = np.full((omega_k.shape[0], theta0_k.shape[0]), theta0_k) else: raise ValueError(f'If equal_charges=True, theta0_k should be a 1D array, got shape {theta0_k.shape}') if theta0_k.shape[0] != omega_k.shape[0]: raise ValueError("Number of charges (length of omega_k) should match the last dimension of theta0_k array.") rotations = Quaternion(np.stack((np.cos(omega_k[..., 0] / 2), np.sin(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2), np.cos(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2), np.zeros_like(omega_k[..., 0]))).T) l_array = np.arange(l_max + 1) coefs_l0 = -sigma1 * (np.sqrt(np.pi / (2 * l_array[None, :] + 1)) * (eval_legendre(l_array[None, :] + 1, np.cos(theta0_k[..., None])) - eval_legendre(l_array[None, :] - 1, np.cos(theta0_k[..., None])))) coefs = rot_sym_expansion(l_array, coefs_l0) coefs_all_single_caps = expansion_rotation(rotations, coefs, l_array) # Rotating is implemented in such a way that it rotates every patch to every position, # hence the redundancy of out of diagonal elements. coefs_all = np.sum(np.diagonal(coefs_all_single_caps), axis=-1) if sigma0 is not None: coefs_all[..., 0] = sigma0 / np.sqrt(4 * np.pi) super().__init__(l_array, np.squeeze(coefs_all)) def map_over_expansion(f: Callable[[Expansion, T], V]) -> Callable[[Expansion, T], V]: """Map a function f over the leading axes of an expansion. Uses for loops, so it is kinda slow.""" def mapped_f(ex: Expansion, *args, **kwargs): og_shape = ex.shape flat_ex = ex.flatten() results = [] for i in range(int(np.prod(og_shape))): results.append(f(flat_ex[i], *args, **kwargs)) try: return np.array(results).reshape(og_shape + results[0].shape) except AttributeError: return np.array(results).reshape(og_shape) return mapped_f def full_fm_arrays(l_array: Array) -> (Array, Array): all_m_list = [] for l in l_array: for i in range(2 * l + 1): all_m_list.append(-l + i) return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list) def rot_sym_expansion(l_array: Array, coefs: Array) -> Array: """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0.""" full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),)) full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs return full_coefs def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion: missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True) fill = np.zeros(np.sum(2 * missing_l + 1)) full_l_array1, _ = expansion.lm_arrays # we search for where to place missing coefs with the help of a boolean array and argmax function comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0 indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0]) new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1) return Expansion(target_l_array, new_coefs) def m_indices_at_l(l_arr: Array, l_idx: int): return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1)) def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array): def delete_zero_entries(l, l_arr, cfs): l_idx = np.where(l_arr == l)[0][0] m_indices = m_indices_at_l(l_arr, l_idx) if np.all(cfs[..., m_indices] == 0): return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1) return l_arr, cfs for l in l_array: l_array, coefs = delete_zero_entries(l, l_array, coefs) return l_array, coefs def plot_theta_profile(ex: Expansion, phi: float = 0, num: int = 100, theta_start: float = 0, theta_end: float = np.pi): theta_vals = np.linspace(theta_start, theta_end, num) charge = ex.charge_value(theta_vals, phi) plt.plot(theta_vals, charge.T) plt.show() def plot_charge_3d(ex: Expansion, num_theta=100, num_phi=100): theta = np.linspace(0, np.pi, num_theta) phi = np.linspace(0, 2 * np.pi, num_phi) theta, phi = np.meshgrid(theta, phi) r = ex.charge_value(theta.flatten(), phi.flatten()).reshape(theta.shape) # Convert spherical coordinates to Cartesian coordinates x = np.sin(theta) * np.cos(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(theta) # Create a heatmap on the sphere fig = go.Figure(data=go.Surface(x=x, y=y, z=z, surfacecolor=r, colorscale='Jet')) fig.update_layout(scene=dict(aspectmode='data')) fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z')) fig.show() def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion): common_l_array = np.union1d(ex1.l_array, ex2.l_array) return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array) def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array): """ General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations with each expansion given in coefs array. :param rotations: Quaternion array, last dimension is 4 :param coefs: array of expansion coefficients :param l_array: array of all ell values of the expansion :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape """ rot_arrays = rotations.ndarray.reshape((-1, 4)) coefs_reshaped = coefs.reshape((-1, coefs.shape[-1])) wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays) new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128) for i, l in enumerate(l_array): Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int) all_m_indices = m_indices_at_l(l_array, i) wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1)) new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn', wm, coefs_reshaped[:, all_m_indices]) return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape) if __name__ == '__main__': # ex = MappedExpansionQuad(0.44, 3, 1, 10) # ex = Expansion(np.arange(3), np.array([1, -1, 0, 1, 2, 0, 3, 0, 2])) # ex = GaussianCharges(omega_k=np.array([[0, 0], [np.pi, 0]]), lambda_k=10, sigma1=0.001, l_max=10) ex = SphericalCap(np.array([[0, 0], [np.pi / 2, 0]]), 0.5, 0.1, 30) # print(ex.coefs) # plot_theta_profile(ex, num=1000, theta_end=2 * np.pi, phi=0) plot_charge_3d(ex) # new_coeffs = expansion_rotation(Quaternion(np.arange(20).reshape(5, 4)).normalized, ex.coeffs, ex.l_array) # print(new_coeffs.shape) # # newnew_coeffs = expansion_rotation(Quaternion(np.arange(16).reshape(4, 4)).normalized, new_coeffs, ex.l_array) # print(newnew_coeffs.shape) # rot_angles = np.linspace(0, np.pi, 1000) # t0 = time.time() # ex.rotate_euler(0, np.pi / 2, -1) # t1 = time.time() # print(ex.coefs) # print(t1 - t0)