import expansion import functions as fn import numpy as np import matplotlib.pyplot as plt Array = np.ndarray Expansion = expansion.Expansion def prefactor(R: float, kappaR: float, c0: float): return R * kappaR * 1e4 / (12.04 * c0) def c0(R: float, kappaR: float): return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2) def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion): common_l_array = np.union1d(ex1.l_array, ex2.l_array) missing_l1 = np.setdiff1d(common_l_array, ex1.l_array, assume_unique=True) missing_l2 = np.setdiff1d(common_l_array, ex2.l_array, assume_unique=True) fill_1 = np.zeros(np.sum(2 * missing_l1 + 1)) fill_2 = np.zeros(np.sum(2 * missing_l2 + 1)) full_l_array1, _ = ex1.lm_arrays full_l_array2, _ = ex2.lm_arrays # we search for where to place missing coeffs with the help of a boolean array and argmax function bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0 bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0 # we set last element to True so that argmax returns last idx if all missing l > max_l bool1[-1, :] = True bool2[-1, :] = True indices1 = np.argmax(bool1, axis=0) indices2 = np.argmax(bool2, axis=0) new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1) new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2) assert len(new_coeffs1) == len(new_coeffs2) return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2) def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, kappaR: float, R: float): ex1, ex2 = expansions_to_common_l(ex1, ex2) full_l_array, full_m_array = ex1.lm_arrays coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], kappaR) full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0) indices, _ = np.nonzero(full_m_array[:, None] == full_m_array[None, :]) flat_l = full_l_array[indices] flat_m = full_m_array[indices] flat_C = full_coefficient_C[indices1, indices2] flat_sigma1 = ex1.coeffs[indices1] flat_sigma2 = ex2.coeffs[indices2] # charge_factor = -1 ** (flat_l + flat_m) * np.real(flat_sigma1 * np.conj(flat_sigma2) + (-1) ** (flat_l + flat_p) * ) return if __name__ == '__main__': kappaR = 3 R = 150 ex1 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=10) ex2 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=5) dist = 2. ex1, ex2 = expansions_to_common_l(ex1, ex2) print(ex1.coeffs) print(ex2.coeffs) # energy = charged_shell_energy(ex1, ex2, dist, kappaR, R) # print(potential) # plt.plot(energy) # plt.show()