from __future__ import annotations import numpy as np from dataclasses import dataclass from functools import cached_property import functions as fn import quaternionic import spherical import time import copy Array = np.ndarray Quaternion = quaternionic.array class InvalidExpansion(Exception): pass @dataclass class Expansion: """Generic class for storing surface charge expansion coefficients.""" l_array: Array coefs: Array _starting_coefs: Array = None # initialized with the __post_init__ method _rotations: Quaternion = Quaternion([1., 0., 0., 0.]) def __post_init__(self): if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1): raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.') if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array): raise InvalidExpansion('Array of l values should be unique and sorted.') self.coefs = self.coefs.astype(np.complex128) self._starting_coefs = np.copy(self.coefs) @property def max_l(self) -> int: return max(self.l_array) @cached_property def lm_arrays(self) -> (Array, Array): """Return l and m arrays containing all (l, m) pairs.""" all_m_list = [] for l in self.l_array: for i in range(2 * l + 1): all_m_list.append(-l + i) return np.repeat(self.l_array, 2 * self.l_array + 1), np.array(all_m_list) def repeat_over_m(self, arr: Array, axis=0) -> Array: if not arr.shape[axis] == len(self.l_array): raise ValueError('Array length should be equal to the number of l in the expansion.') return np.repeat(arr, 2 * self.l_array + 1, axis=axis) def rotate(self, rotations: Quaternion, rotate_existing=False): self._rotations = rotations coefs = self.coefs if rotate_existing else self._starting_coefs self.coefs = expansion_rotation(rotations, coefs, self.l_array) def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False): R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma) self.rotate(R_euler, rotate_existing=rotate_existing) def clone(self) -> Expansion: return copy.deepcopy(self) class Expansion24(Expansion): def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.): l_array = np.array([0, 2, 4]) coeffs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4])) super().__init__(l_array, coeffs) class MappedExpansion(Expansion): def __init__(self, a_bar: float, kappaR: float, sigma_m: float, max_l: int = 20, sigma0: float = 0): l_array = np.array([l for l in range(max_l + 1) if l % 2 == 0]) coeffs = (2 * sigma_m * fn.coeff_C_diff(l_array, kappaR) * np.sqrt(4 * np.pi * (2 * l_array + 1)) * np.power(a_bar, l_array)) coeffs[0] = sigma0 coeffs = rot_sym_expansion(l_array, coeffs) # coeffs = np.full((1000, len(coeffs)), coeffs) super().__init__(l_array, coeffs) def rot_sym_expansion(l_array: Array, coeffs: Array) -> Array: """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0.""" full_coeffs = np.zeros(np.sum(2 * l_array + 1)) full_coeffs[np.cumsum(2 * l_array + 1) - l_array - 1] = coeffs return full_coeffs def coeffs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion: missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True) fill = np.zeros(np.sum(2 * missing_l + 1)) full_l_array1, _ = expansion.lm_arrays # we search for where to place missing coeffs with the help of a boolean array and argmax function comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0 indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0]) new_coeffs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1) return Expansion(target_l_array, new_coeffs) def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion): common_l_array = np.union1d(ex1.l_array, ex2.l_array) return coeffs_fill_missing_l(ex1, common_l_array), coeffs_fill_missing_l(ex2, common_l_array) def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array): """ General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations with each expansion given in coefs array. :param rotations: Quaternion array, last dimension is 4 :param coefs: array of expansion coefficients :param l_array: array of all ell values of the expansion :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape """ rot_arrays = rotations.ndarray.reshape((-1, 4)) coefs_reshaped = coefs.reshape((-1, coefs.shape[-1])) wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays) new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128) for i, l in enumerate(l_array): Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int) all_m_indices = np.arange(np.sum(2 * l_array[:i] + 1), np.sum(2 * l_array[:i + 1] + 1)) wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1)) new_coefs[..., all_m_indices] = np.einsum('rmn, qm -> rqn', wm, coefs_reshaped[:, all_m_indices]) return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape) if __name__ == '__main__': ex = MappedExpansion(0.44, 3, 1, 10) print(ex.coefs) # new_coeffs = expansion_rotation(Quaternion(np.arange(20).reshape(5, 4)).normalized, ex.coeffs, ex.l_array) # print(new_coeffs.shape) # # newnew_coeffs = expansion_rotation(Quaternion(np.arange(16).reshape(4, 4)).normalized, new_coeffs, ex.l_array) # print(newnew_coeffs.shape) rot_angles = np.linspace(0, np.pi, 1000) t0 = time.time() ex.rotate_euler(rot_angles, rot_angles, rot_angles) t1 = time.time() print(ex.coefs.shape) print(t1 - t0)