import expansion import parameters import functions as fn from py3nj import wigner3j import numpy as np import time from typing import Literal import units_and_constants as uc Array = np.ndarray Expansion = expansion.Expansion ModelParams = parameters.ModelParams EnergyUnit = Literal['kT', 'eV', 'J'] def energy_units(units: EnergyUnit, params: ModelParams) -> float: match units: case 'eV': return 1 / (uc.CONSTANTS.e0 * uc.UNITS.voltage) case 'kT': return 1 / (params.temperature * uc.CONSTANTS.Boltzmann) case 'J': return uc.UNITS.energy def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, params: ModelParams, units: EnergyUnit = 'kT'): ex1, ex2 = expansion.expansions_to_common_l(ex1, ex2) dist = dist * params.R full_l_array, full_m_array = ex1.lm_arrays # determine indices of relevant elements in the sum indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :]) flat_l = full_l_array[indices_l] flat_p = full_l_array[indices_p] flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p] charge_factor = np.real(ex1.coefs[..., indices_l] * np.conj(ex2.coefs[..., indices_p]) + (-1) ** (flat_l + flat_p) * ex1.coefs[..., indices_p] * np.conj(ex2.coefs[..., indices_l])) all_s_array = np.arange(2 * ex1.max_l + 1) bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist) # additional selection that excludes terms where Wigner 3j symbols are 0 by definition s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None] s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :]) indices_lpm, indices_s = np.nonzero(s_bool1 * s_bool2) l_vals = flat_l[indices_lpm] p_vals = flat_p[indices_lpm] m_vals = flat_m[indices_lpm] s_vals = all_s_array[indices_s] bessel_vals = bessels[indices_s] # While all other arrays are 1D, this one can have extra leading axes corresponding to leading dimensions # of expansion coefficients. The last dimension is the same as other arrays. charge_vals = charge_factor[..., indices_lpm] lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1)) # the same combination of l, s, and p is repeated many times _, unique_indices1, inverse1 = np.unique(np.stack((l_vals, s_vals, p_vals)), axis=1, return_inverse=True, return_index=True) wigner1 = wigner3j(2 * l_vals[unique_indices1], 2 * s_vals[unique_indices1], 2 * p_vals[unique_indices1], 0, 0, 0)[inverse1] # all the combinations (l, s, p, m) are unique wigner2 = wigner3j(2 * l_vals, 2 * s_vals, 2 * p_vals, -2 * m_vals, 0, 2 * m_vals) constants = params.R ** 2 / (params.kappa * params.epsilon * uc.CONSTANTS.epsilon0) * energy_units(units, params) C_vals = fn.interaction_coeff_C(l_vals, p_vals, params.kappaR) lspm_vals = C_vals * (-1) ** (l_vals + m_vals) * lps_terms * bessel_vals * wigner1 * wigner2 broadcasted_lspm_vals = np.broadcast_to(lspm_vals, charge_vals.shape) return 0.5 * constants * np.sum(broadcasted_lspm_vals * charge_vals, axis=-1) if __name__ == '__main__': params = ModelParams(R=150, kappaR=3) ex1 = expansion.MappedExpansionQuad(0.44, params.kappaR, 0.001, max_l=20) ex2 = ex1.clone() dist = 2. # ex1, ex2 = expansions_to_common_l(ex1, ex2) # print(ex1.coeffs) # print(ex2.coeffs) t0 = time.perf_counter() energy = charged_shell_energy(ex1, ex2, dist, params) t1 = time.perf_counter() print('energy: ', energy) print('time: ', t1 - t0) # plt.plot(energy) # plt.show()