from analysis.peak_heigth import * Array = np.ndarray Expansion = expansion.Expansion RotConfig = Literal['ep', 'pp', 'sep'] def get_kappaR_higher_multipole_dicts(peak: Peak, params: ModelParams, emanuele_data: Array, abar: float, kappaR: Array, dist_cs: list, max_kappaR: float = 50, min_kappa: float = 0.01, only_loaded: bool = False): correct_abar_indices, = np.nonzero(np.isclose(emanuele_data[:, 1], abar)) emanuele_data = emanuele_data[correct_abar_indices] distances, inverse = np.unique(emanuele_data[:, 0], return_inverse=True) energy_fn = mapping.parameter_map_two_expansions(interactions.charged_shell_energy, peak.kappaR_axis_in_expansion) energy = [] for d in dist_cs: if not only_loaded: energy.append(energy_fn(peak.ex1, peak.ex2, params, dist=d)) else: energy.append(np.full((len(kappaR),), 1.)) data_dict_ic = {} data_dict_cs = {} k = 0 for i in range(len(distances)): d = np.around(distances[i], 5) if d in np.around(dist_cs, 5): idx, = np.nonzero(inverse == i) relevant_kR_indices = (emanuele_data[idx, 2] <= max_kappaR) * (min_kappa <= emanuele_data[idx, 2]) kR = emanuele_data[idx, 2][relevant_kR_indices] en = emanuele_data[idx, peak.ici_data_column][relevant_kR_indices] sort = np.argsort(kR) if peak.log_y: data_dict_ic[d] = np.stack((kR[sort], np.abs(en)[sort])).T data_dict_cs[d] = np.stack((kappaR, np.abs(energy[k]))).T else: data_dict_ic[d] = np.stack((kR[sort], en[sort])).T data_dict_cs[d] = np.stack((kappaR, energy[k])).T k += 1 return data_dict_ic, data_dict_cs def IC_peak_energy_plot(dist: list, which: RotConfig, abar=0.8, min_kappaR: float = 0.01, max_kappaR: float = 50., R: float = 150, save_as: Path = None, save_data: bool = False, quad_correction: bool = False, log_y: bool = True): # em_data_path = (ICI_DATA_PATH.joinpath("FIG_11")) em_data_path = (ICI_DATA_PATH.joinpath("TEST_HIGHER_MULTIPOLES")) em_data = np.load(em_data_path.joinpath("higher_multiplot_energy_2.npz")) data2 = em_data['L2'] data4 = em_data['L4'] data6 = em_data['L6'] num = 100 if which == 'sep' else 30 kappaR = np.geomspace(min_kappaR, max_kappaR, num) params = ModelParams(R=R, kappaR=kappaR) ex = charge_distributions.create_mapped_quad_expansion(abar, params.kappaR, 0.00099, l_max=20) if which == 'ep': peak = PeakEP(ex, log_y, kappaR_axis_in_expansion=0) elif which == 'pp': peak = PeakPP(ex, log_y, kappaR_axis_in_expansion=0) elif which == 'sep': peak = PeakSEP(ex, log_y, kappaR_axis_in_expansion=0) else: raise ValueError data_dict_ic2, data_dict_cs = get_kappaR_higher_multipole_dicts(peak, params, data2,abar, kappaR, dist, max_kappaR, min_kappaR) data_dict_ic4, _ = get_kappaR_higher_multipole_dicts(peak, params, data4, abar, kappaR, dist, max_kappaR, min_kappaR) data_dict_ic6, _ = get_kappaR_higher_multipole_dicts(peak, params, data6, abar, kappaR, dist, max_kappaR, min_kappaR) colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color']) fig = plt.figure(figsize=(2, 2)) gs = gridspec.GridSpec(1, 1, figure=fig) gs.update(left=0.25, right=0.95, top=0.9, bottom=0.21) ax = fig.add_subplot(gs[0, 0]) for (key, data2), data_cs, data4, data6 in zip(data_dict_ic2.items(), data_dict_cs.values(), data_dict_ic4.values(), data_dict_ic6.values()): current_color = next(colors) ax.plot(data2[:, 0], data2[:, 1], label=r'$l=2$', c=current_color) ax.plot(data_cs[:, 0], data_cs[:, 1], ls='--', c='k') ax.plot(data4[:, 0], data4[:, 1], ls='-', c=next(colors), label=r'$l=4$') ax.plot(data6[:, 0], data6[:, 1], ls='-', c=next(colors), label=r'$l=6$') ax.legend(fontsize=9, ncol=1, frameon=False, handlelength=0.7, loc='upper right', bbox_to_anchor=(0.5, 0.5), # bbox_to_anchor=(0.42, 0.9) ) ax.set_title(f'$\\bar a = {abar:.1f}$, $\\rho = {key:.1f}$', loc='center', # x=0.95, y=0.8, y=0.96, # fontsize=9 ) ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=11) ax.set_xlabel(r'$\kappa R$', fontsize=11) ax.set_ylabel(peak.y_label, fontsize=11) if log_y: ax.set_yscale('log') ax.set_xscale('log') # plt.tight_layout() if save_as is not None: plt.savefig(save_as, dpi=300) plt.show() if __name__ == '__main__': dist = [3.] IC_peak_energy_plot(abar=0.5, dist=dist, which='pp', min_kappaR=0.1, max_kappaR=50, save_as=FIGURES_PATH.joinpath("ICi_data").joinpath("peak_pp_kappaR_higher_correction_abar05_rho30.png"), save_data=False, quad_correction=False, log_y=False )