from __future__ import annotations import numpy as np from dataclasses import dataclass import charged_shells.functions as fn import quaternionic import spherical import copy Array = np.ndarray Quaternion = quaternionic.array class InvalidExpansion(Exception): pass @dataclass class Expansion: """Generic class for storing surface charge expansion coefficients.""" l_array: Array coefs: Array _starting_coefs: Array = None # initialized with the __post_init__ method _rotations: Quaternion = None def __post_init__(self): if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1): raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.') if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array): raise InvalidExpansion('Array of l values should be unique and sorted.') self.coefs = self.coefs.astype(np.complex128) self._starting_coefs = np.copy(self.coefs) self._rotations = Quaternion([1., 0., 0., 0.]) def __getitem__(self, item): return Expansion(self.l_array, self.coefs[item]) @property def max_l(self) -> int: return max(self.l_array) @property def shape(self): return self.coefs.shape[:-1] def flatten(self) -> Expansion: new_expansion = self.clone() # np.ndarray.flatten() also copies the array new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1]) new_expansion._rotations = new_expansion._rotations.reshape(-1, 4) return new_expansion def reshape(self, shape: tuple): self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],)) self._rotations = self._rotations.reshape(shape + (4,)) @property def lm_arrays(self) -> (Array, Array): """Return l and m arrays containing all (l, m) pairs.""" return full_lm_arrays(self.l_array) def repeat_over_m(self, arr: Array, axis=0) -> Array: if not arr.shape[axis] == len(self.l_array): raise ValueError('Array length should be equal to the number of l in the expansion.') return np.repeat(arr, 2 * self.l_array + 1, axis=axis) def rotate(self, rotations: Quaternion, rotate_existing=False): if rotate_existing: raise NotImplementedError("Rotation of possibly already rotated coefficients is not yet supported.") self._rotations = rotations self.coefs = expansion_rotation(rotations, self._starting_coefs, self.l_array) def rotate_euler(self, alpha: Array = 0, beta: Array = 0, gamma: Array = 0, rotate_existing=False): R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma) self.rotate(R_euler, rotate_existing=rotate_existing) def inverse_sign(self, exclude_00: bool = False): if self.l_array[0] == 0 and exclude_00: self.coefs[..., 1:] = -self.coefs[..., 1:] self._starting_coefs[..., 1:] = -self._starting_coefs[..., 1:] return self self.coefs = -self.coefs self._starting_coefs = -self._starting_coefs return self def charge_value(self, theta: Array | float, phi: Array | float): if not isinstance(theta, Array): theta = np.array([theta]) if not isinstance(phi, Array): phi = np.array([phi]) theta, phi = np.broadcast_arrays(theta, phi) full_l_array, full_m_array = self.lm_arrays return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None], full_m_array[:, None], theta[None, :], phi[None, :]), axis=-2))) def clone(self) -> Expansion: return copy.deepcopy(self) def m_indices_at_l(l_arr: Array, l_idx: int): """ For a given l_array and index l_idx for some ell in this array, get indices of all (ell, m) coefficients in coefficients array. """ return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1)) def full_lm_arrays(l_array: Array) -> (Array, Array): """From an array of l_values get arrays of ell and m that give you all pairs (ell, m).""" all_m_list = [] for l in l_array: for i in range(2 * l + 1): all_m_list.append(-l + i) return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list) def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion: """Explicitly add missing expansion coefficients so that expansion includes all ell values from the target array.""" missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True) fill = np.zeros(np.sum(2 * missing_l + 1)) full_l_array1, _ = expansion.lm_arrays # we search for where to place missing coefs with the help of a boolean array and argmax function comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0 indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0]) new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1) return Expansion(target_l_array, new_coefs) def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion): """Explicitly add zero expansion coefficients so that both expansions include coefficients for the same ell.""" common_l_array = np.union1d(ex1.l_array, ex2.l_array) return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array) def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array): """ General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations with each expansion given in coefs array. :param rotations: Quaternion array, last dimension is 4 :param coefs: array of expansion coefficients :param l_array: array of all ell values of the expansion :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape """ rot_arrays = rotations.ndarray.reshape((-1, 4)) coefs_reshaped = coefs.reshape((-1, coefs.shape[-1])) wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays) new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128) for i, l in enumerate(l_array): Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int) all_m_indices = m_indices_at_l(l_array, i) wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1)) new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn', wm, coefs_reshaped[:, all_m_indices]) return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)