import numpy as np from scipy.optimize import bisect, root_scalar from charged_shells import expansion, mapping, parameters, potentials from typing import Callable Expansion = expansion.Expansion Array = np.ndarray ModelParams = parameters.ModelParams @mapping.map_over_expansion def charge_patch_size(ex: Expansion, phi: float = 0, theta0: Array | float = 0, theta1: Array | float = np.pi / 2): return bisect(lambda theta: ex.charge_value(theta, phi), theta0, theta1) def potential_patch_size(ex: Expansion, params: ModelParams, phi: float = 0, theta0: Array | float = 0, theta1: Array | float = np.pi / 2, match_expansion_axis_to_params: int = None, skip_nozero_cases: bool = False): # this is more complicate to map over leading axes of the expansion as potential also depends on model parameters, # with some, such as kappaR, also being the parameters of the expansion in the first place. When mapping, # we must therefore provide the expansion axis that should match the collection of parameters in params. @mapping.map_over_expansion def potential_zero(exp: Expansion, prms: ModelParams): try: return bisect(lambda theta: potentials.charged_shell_potential(theta, phi, 1, exp, prms), theta0, theta1) except ValueError: if skip_nozero_cases: return 0. else: raise ValueError("Potential has no zero on the given interval.") return mapping.parameter_map_single_expansion(potential_zero, match_expansion_axis_to_params)(ex, params) def inverse_potential_patch_size(target_patch_size: float, ex_generator: Callable[[float], Expansion], x0: float, params: ModelParams, **ps_kwargs): def patch_size_dif(x): ex = ex_generator(x) return potential_patch_size(ex, params, **ps_kwargs) - target_patch_size root_result = root_scalar(patch_size_dif, x0=x0) if not root_result.converged: raise ValueError('No convergence. Patches of desired size might not be achievable in the given model. ' 'Conversely, a common mistake might be target patch size input in degrees.') return root_result.root