expansion.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. from __future__ import annotations
  2. import numpy as np
  3. from dataclasses import dataclass
  4. import charged_shells.functions as fn
  5. import quaternionic
  6. import spherical
  7. import copy
  8. from scipy.special import eval_legendre
  9. Array = np.ndarray
  10. Quaternion = quaternionic.array
  11. class InvalidExpansion(Exception):
  12. pass
  13. @dataclass
  14. class Expansion:
  15. """Generic class for storing surface charge expansion coefficients."""
  16. l_array: Array
  17. coefs: Array
  18. _starting_coefs: Array = None # initialized with the __post_init__ method
  19. _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
  20. def __post_init__(self):
  21. if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
  22. raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
  23. if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
  24. raise InvalidExpansion('Array of l values should be unique and sorted.')
  25. self.coefs = self.coefs.astype(np.complex128)
  26. self._starting_coefs = np.copy(self.coefs)
  27. def __getitem__(self, item):
  28. return Expansion(self.l_array, self.coefs[item])
  29. @property
  30. def max_l(self) -> int:
  31. return max(self.l_array)
  32. @property
  33. def shape(self):
  34. return self.coefs.shape[:-1]
  35. def flatten(self) -> Expansion:
  36. new_expansion = self.clone() # np.ndarray.flatten() also copies the array
  37. new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1])
  38. new_expansion._rotations = new_expansion._rotations.reshape(-1, 4)
  39. return new_expansion
  40. def reshape(self, shape: tuple):
  41. self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],))
  42. self._rotations = self._rotations.reshape(shape + (4,))
  43. @property
  44. def lm_arrays(self) -> (Array, Array):
  45. """Return l and m arrays containing all (l, m) pairs."""
  46. return full_lm_arrays(self.l_array)
  47. def repeat_over_m(self, arr: Array, axis=0) -> Array:
  48. if not arr.shape[axis] == len(self.l_array):
  49. raise ValueError('Array length should be equal to the number of l in the expansion.')
  50. return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
  51. def rotate(self, rotations: Quaternion, rotate_existing=False):
  52. if rotate_existing:
  53. raise NotImplementedError("Rotation of possibly already rotated coefficients is not yet supported.")
  54. self._rotations = rotations
  55. self.coefs = expansion_rotation(rotations, self._starting_coefs, self.l_array)
  56. def rotate_euler(self, alpha: Array = 0, beta: Array = 0, gamma: Array = 0, rotate_existing=False):
  57. # TODO: additional care required on the convention used to transform euler angles to quaternions
  58. # TODO: might be off for a minus sign for each? angle !!
  59. R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
  60. self.rotate(R_euler, rotate_existing=rotate_existing)
  61. def inverse_sign(self, exclude_00: bool = False):
  62. if self.l_array[0] == 0 and exclude_00:
  63. self.coefs[..., 1:] = -self.coefs[..., 1:]
  64. self._starting_coefs[..., 1:] = -self._starting_coefs[..., 1:]
  65. return self
  66. self.coefs = -self.coefs
  67. self._starting_coefs = -self._starting_coefs
  68. return self
  69. def charge_value(self, theta: Array | float, phi: Array | float):
  70. if not isinstance(theta, Array):
  71. theta = np.array([theta])
  72. if not isinstance(phi, Array):
  73. phi = np.array([phi])
  74. theta, phi = np.broadcast_arrays(theta, phi)
  75. full_l_array, full_m_array = self.lm_arrays
  76. return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None],
  77. full_m_array[:, None],
  78. theta[None, :], phi[None, :]), axis=-2)))
  79. def clone(self) -> Expansion:
  80. return copy.deepcopy(self)
  81. class Expansion24(Expansion):
  82. def __init__(self, sigma2: float | Array, sigma4: float | Array, sigma0: float | Array = 0.):
  83. l_array = np.array([0, 2, 4])
  84. try:
  85. broadcasted_arrs = np.broadcast_arrays(np.sqrt(4*np.pi) * sigma0, sigma2, sigma4)
  86. except ValueError:
  87. raise ValueError("Given sigma0, sigma2 and sigma4 arrays cannot be broadcast to a common shape.")
  88. coefs = rot_sym_expansion(l_array, np.stack(broadcasted_arrs, axis=-1))
  89. super().__init__(l_array, coefs)
  90. class MappedExpansionSym(Expansion):
  91. """
  92. Expansion that matches the outside potential of an impermeable particle with
  93. a rotationally symmetric point charge distribution inside (specifically, either quadrupolar or dipolar).
  94. """
  95. def __init__(self,
  96. a_bar: Array | float,
  97. kappaR: Array | float,
  98. sigma_tilde: float,
  99. l_array: Array,
  100. sigma0: float | Array = 0):
  101. """
  102. :param a_bar: distance between the center and off center charges
  103. :param kappaR: screening parameter
  104. :param sigma_tilde: magnitude of off-center charges / 4pi R^2
  105. :param l_max: maximal ell value for the expansion
  106. :param sigma0: total (mean) charge density
  107. """
  108. if not isinstance(sigma0, Array):
  109. sigma0 = np.array([sigma0])
  110. if sigma0.ndim > 1:
  111. raise ValueError(f'Sigma0 parameter cannot be an array of dimensions larger than 1, got dim={sigma0.ndim}')
  112. a_bar_bc, kappaR_bc = np.broadcast_arrays(a_bar, kappaR)
  113. a_bar_bc2, kappaR_bc2, l_array_expanded = np.broadcast_arrays(a_bar_bc[..., None],
  114. kappaR_bc[..., None],
  115. l_array[None, :])
  116. coefs = (2 * sigma_tilde * fn.coef_C_diff(l_array_expanded, kappaR_bc2)
  117. * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar_bc2, l_array_expanded))
  118. coefs = np.squeeze(rot_sym_expansion(l_array, coefs))
  119. kappaR_bc3, sigma0_bc3 = np.broadcast_arrays(kappaR_bc[..., None], sigma0[None, :])
  120. coefs = expansion_total_charge(coefs, net_charge_map(sigma0_bc3, kappaR_bc3), l_array)
  121. super().__init__(l_array, np.squeeze(coefs))
  122. class MappedExpansionQuad(MappedExpansionSym):
  123. def __init__(self,
  124. a_bar: Array | float,
  125. kappaR: Array | float,
  126. sigma_tilde: float,
  127. l_max: int = 20,
  128. sigma0: float | Array = 0):
  129. l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0])
  130. super().__init__(a_bar, kappaR, sigma_tilde, l_array, sigma0)
  131. class MappedExpansionDipole(MappedExpansionSym):
  132. def __init__(self,
  133. a_bar: Array | float,
  134. kappaR: Array | float,
  135. sigma_tilde: float,
  136. l_max: int = 20,
  137. sigma0: float | Array = 0):
  138. l_array = np.array([l for l in range(l_max + 1) if l % 2 == 1 or l == 0])
  139. super().__init__(a_bar, kappaR, sigma_tilde, l_array, sigma0)
  140. class GaussianCharges(Expansion):
  141. """Expansion for a collection of smeared charges on the sphere."""
  142. def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int,
  143. sigma0: float | Array = 0, equal_charges: bool = True):
  144. """
  145. :param omega_k: array of positions (theta, phi) of all charges
  146. :param lambda_k: smear parameter for each charge or smear for different cases (if equal_charges = True)
  147. :param sigma1: scaling
  148. :param l_max: maximal ell value for the expansion
  149. :param sigma0: total (mean) charge density
  150. :param equal_charges: if this is False, length of lambda_k should be N. If True, theta0_k array will be treated
  151. as different expansion cases
  152. """
  153. omega_k = omega_k.reshape(-1, 2)
  154. if not isinstance(lambda_k, Array):
  155. lambda_k = np.array([lambda_k])
  156. if equal_charges:
  157. if lambda_k.ndim > 1:
  158. raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}')
  159. lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T
  160. if lambda_k.shape[-1] != omega_k.shape[0]:
  161. raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.")
  162. lambda_k = lambda_k.reshape(-1, omega_k.shape[0])
  163. l_array = np.arange(l_max + 1)
  164. full_l_array, full_m_array = full_lm_arrays(l_array)
  165. theta_k = omega_k[:, 0]
  166. phi_k = omega_k[:, 1]
  167. summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :])
  168. * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :])
  169. * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None],
  170. theta_k[None, None, :], phi_k[None, None, :])))
  171. coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1))
  172. coefs = expansion_total_charge(coefs, sigma0, l_array)
  173. l_array, coefs = purge_unneeded_l(l_array, coefs)
  174. super().__init__(l_array, coefs)
  175. class SphericalCap(Expansion):
  176. """Expansion for a collection of spherical caps."""
  177. def __init__(self, omega_k: Array, theta0_k: Array | float, sigma1: float, l_max: int, sigma0: float | Array = 0,
  178. equal_sizes: bool = True):
  179. """
  180. :param omega_k: array of positions (theta, phi) of all spherical caps
  181. :param theta0_k: sizes of each spherical caps or cap sizes for different cases (if equal_sizes = True)
  182. :param sigma1: charge magnitude for the single cap, currently assumes that this is equal for all caps
  183. :param l_max: maximal ell value for the expansion
  184. :param sigma0: total (mean) charge density
  185. :param equal_sizes: if this is False, length of theta0_k should be N. If True, theta0_k array will be treated as
  186. different expansion cases
  187. """
  188. omega_k = omega_k.reshape(-1, 2)
  189. if not isinstance(theta0_k, Array):
  190. theta0_k = np.array(theta0_k)
  191. if equal_sizes:
  192. if theta0_k.ndim == 0:
  193. theta0_k = np.full(omega_k.shape[0], theta0_k)
  194. elif theta0_k.ndim == 1:
  195. theta0_k = np.full((omega_k.shape[0], theta0_k.shape[0]), theta0_k)
  196. else:
  197. raise ValueError(f'If equal_charges=True, theta0_k should be a 1D array, got shape {theta0_k.shape}')
  198. if theta0_k.shape[0] != omega_k.shape[0]:
  199. raise ValueError("Number of charges (length of omega_k) should match the last dimension of theta0_k array.")
  200. rotations = Quaternion(np.stack((np.cos(omega_k[..., 0] / 2),
  201. np.sin(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
  202. np.cos(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
  203. np.zeros_like(omega_k[..., 0]))).T)
  204. l_array = np.arange(l_max + 1)
  205. coefs_l0 = -sigma1 * (np.sqrt(np.pi / (2 * l_array[None, :] + 1)) *
  206. (eval_legendre(l_array[None, :] + 1, np.cos(theta0_k[..., None]))
  207. - eval_legendre(l_array[None, :] - 1, np.cos(theta0_k[..., None]))))
  208. coefs = rot_sym_expansion(l_array, coefs_l0)
  209. coefs_all_single_caps = expansion_rotation(rotations, coefs, l_array)
  210. # Rotating is implemented in such a way that it rotates every patch to every position,
  211. # hence the redundancy of out of diagonal elements.
  212. coefs_all = np.sum(np.diagonal(coefs_all_single_caps), axis=-1)
  213. coefs_all = expansion_total_charge(coefs_all, sigma0, l_array)
  214. super().__init__(l_array, np.squeeze(coefs_all))
  215. def net_charge_map(sigma0: float | Array, kappaR: float | Array):
  216. return sigma0 * np.exp(kappaR) / np.sinh(kappaR) * kappaR / (1 + kappaR)
  217. def full_lm_arrays(l_array: Array) -> (Array, Array):
  218. """From an array of l_values get arrays of ell and m that give you all pairs (ell, m)."""
  219. all_m_list = []
  220. for l in l_array:
  221. for i in range(2 * l + 1):
  222. all_m_list.append(-l + i)
  223. return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list)
  224. def rot_sym_expansion(l_array: Array, coefs: Array) -> Array:
  225. """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
  226. full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),))
  227. full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs
  228. return full_coefs
  229. def expansion_total_charge(coefs: Array, sigma0: float | Array | None, l_vals: Array):
  230. """Adds a new axis to the expansion coefficients that modifies expansion based on given net charge density."""
  231. if l_vals[0] != 0:
  232. raise NotImplementedError("To modify total charge, the first expansion term should be l=0. "
  233. "Adding l=0 term not yet implemented (TODO).")
  234. if sigma0 is None:
  235. return coefs
  236. if not isinstance(sigma0, Array):
  237. x = copy.deepcopy(coefs)
  238. x[..., 0] = sigma0 * np.sqrt(4 * np.pi)
  239. return x
  240. # insert new axis in the 2nd-to-last place and repeat the expansion data over this new axis
  241. x = np.repeat(np.expand_dims(coefs, -2), sigma0.shape[-1], axis=-2)
  242. x[..., 0] = sigma0 * np.sqrt(4 * np.pi)
  243. return x
  244. def m_indices_at_l(l_arr: Array, l_idx: int):
  245. """
  246. For a given l_array and index l_idx for some ell in this array, get indices of all (ell, m) coefficients
  247. in coefficients array.
  248. """
  249. return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1))
  250. def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array):
  251. """Remove ell values from expansion for which all (ell, m) coefficients are zero."""
  252. def delete_zero_entries(l, l_arr, cfs):
  253. l_idx = np.where(l_arr == l)[0][0]
  254. m_indices = m_indices_at_l(l_arr, l_idx)
  255. if np.all(cfs[..., m_indices] == 0):
  256. return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1)
  257. return l_arr, cfs
  258. for l in l_array:
  259. l_array, coefs = delete_zero_entries(l, l_array, coefs)
  260. return l_array, coefs
  261. def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
  262. """Explicitly add missing expansion coefficients so that expansion includes all ell values from the target array."""
  263. missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
  264. fill = np.zeros(np.sum(2 * missing_l + 1))
  265. full_l_array1, _ = expansion.lm_arrays
  266. # we search for where to place missing coefs with the help of a boolean array and argmax function
  267. comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
  268. indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
  269. new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
  270. return Expansion(target_l_array, new_coefs)
  271. def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
  272. """Explicitly add zero expansion coefficients so that both expansions include coefficients for the same ell."""
  273. common_l_array = np.union1d(ex1.l_array, ex2.l_array)
  274. return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array)
  275. def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
  276. """
  277. General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
  278. with each expansion given in coefs array.
  279. :param rotations: Quaternion array, last dimension is 4
  280. :param coefs: array of expansion coefficients
  281. :param l_array: array of all ell values of the expansion
  282. :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
  283. """
  284. rot_arrays = rotations.ndarray.reshape((-1, 4))
  285. coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
  286. wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
  287. new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
  288. for i, l in enumerate(l_array):
  289. Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
  290. all_m_indices = m_indices_at_l(l_array, i)
  291. wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
  292. new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn',
  293. wm, coefs_reshaped[:, all_m_indices])
  294. return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)