123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import matplotlib.pyplot as plt
- from charged_shells import expansion, interactions, mapping
- from charged_shells.parameters import ModelParams
- import numpy as np
- from typing import Literal
- from pathlib import Path
- from functools import partial
- import json
- Array = np.ndarray
- Expansion = expansion.Expansion
- RotConfig = Literal['ep', 'pp']
- def peak_energy_plot(kappaR: Array,
- a_bar: Array,
- which: Literal['ep', 'pp'],
- R: float = 150,
- dist: float = 2.,
- l_max=20,
- save_as: Path = None):
- params = ModelParams(R=R, kappaR=kappaR)
- # energy = []
- # for params in params.unravel():
- # ex1 = expansion.MappedExpansionQuad(a_bar, params.kappaR, 0.001, l_max=l_max)
- # ex2 = ex1.clone()
- # if which == 'ep':
- # ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
- # energy.append(interactions.charged_shell_energy(ex1, ex2, dist, params))
- #
- # energy = np.array(energy)
- ex1 = expansion.MappedExpansionQuad(a_bar[:, None], params.kappaR[None, :], 0.001, l_max=l_max)
- ex2 = ex1.clone()
- if which == 'ep':
- ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist), 1)
- energy = energy_fn(ex1, ex2, params)
- fig, ax = plt.subplots()
- for en, ab in zip(energy, a_bar):
- ax.plot(kappaR, en / en[0], label=rf'$\bar a = {ab:.1f}$')
- # ax.plot(kappaR, en, label=rf'$\bar a = {ab:.1f}$')
- ax.legend(fontsize=12)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- ax.set_ylabel(rf'$\bar V$', fontsize=15)
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def IC_peak_energy_plot(config_data: dict,
- a_bar: list,
- which: Literal['ep', 'pp'],
- save_as: Path = None):
- em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
- em_data = np.load(em_data_path.joinpath("pair_energy_fig11.npz"))
- data = em_data['fixA']
- if which == 'ep':
- column_idx = 4
- elif which == 'pp':
- column_idx = 3
- else:
- raise ValueError
- abar, inverse, counts = np.unique(data[:, 1], return_counts=True, return_inverse=True)
- # print(indices, counts)
- print(inverse)
- # sort_abar = np.argsort(indices)
- # print(data[:, 1][indices])
- # print(sort_abar)
- # print(data[:, 1][indices[sort_abar]])
- # energies = data[:, column_idx].reshape(-1, counts[0])
- # kappaR = data[:, 2].reshape(-1, counts[0])
- # print(len(kappaR), len(energies), len(abar))
- fig, ax = plt.subplots()
- for i in range(len(abar)):
- if abar[i] in a_bar:
- idx, = np.nonzero(inverse == i)
- kR = data[idx, 2]
- en = data[idx, column_idx]
- sort = np.argsort(kR)
- # ax.plot(kR[sort], en[sort] / en[sort][0], label=rf'$\bar a = {abar[i]:.2f}$')
- ax.plot(kR[sort], en[sort], label=rf'$\bar a = {abar[i]:.2f}$')
- ax.legend(fontsize=12)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- ax.set_ylabel(rf'$\bar V_{{{which}}}$', fontsize=15)
- plt.tight_layout()
- ax.set_yscale('log')
- ax.set_xscale('log')
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- if __name__ == '__main__':
-
- with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
- config_data = json.load(config_file)
- kappaR = np.arange(0.5, 10, 0.1)
- a_bar = np.arange(0.2, 0.8, 0.2)
- # peak_energy_plot(kappaR, a_bar, which='pp',
- # # save_as=Path('/home/andraz/ChargedShells/Figures/nonmonotonicity_check_ep.pdf')
- # )
-
- IC_peak_energy_plot(config_data, a_bar=[0.2, 0.24, 0.36, 0.52, 0.8], which='pp',
- # save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/nonmonotonicity_check_ep.pdf')
- )
|