expansion.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. from __future__ import annotations
  2. import numpy as np
  3. from dataclasses import dataclass
  4. import charged_shells.functions as fn
  5. import quaternionic
  6. import spherical
  7. import copy
  8. from scipy.special import eval_legendre
  9. Array = np.ndarray
  10. Quaternion = quaternionic.array
  11. class InvalidExpansion(Exception):
  12. pass
  13. @dataclass
  14. class Expansion:
  15. """Generic class for storing surface charge expansion coefficients."""
  16. l_array: Array
  17. coefs: Array
  18. _starting_coefs: Array = None # initialized with the __post_init__ method
  19. _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
  20. def __post_init__(self):
  21. if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
  22. raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
  23. if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
  24. raise InvalidExpansion('Array of l values should be unique and sorted.')
  25. self.coefs = self.coefs.astype(np.complex128)
  26. self._starting_coefs = np.copy(self.coefs)
  27. def __getitem__(self, item):
  28. return Expansion(self.l_array, self.coefs[item])
  29. @property
  30. def max_l(self) -> int:
  31. return max(self.l_array)
  32. @property
  33. def shape(self):
  34. return self.coefs.shape[:-1]
  35. def flatten(self) -> Expansion:
  36. new_expansion = self.clone() # np.ndarray.flatten() also copies the array
  37. new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1])
  38. new_expansion._rotations = new_expansion._rotations.reshape(-1, 4)
  39. return new_expansion
  40. def reshape(self, shape: tuple):
  41. self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],))
  42. self._rotations = self._rotations.reshape(shape + (4,))
  43. @property
  44. def lm_arrays(self) -> (Array, Array):
  45. """Return l and m arrays containing all (l, m) pairs."""
  46. return full_lm_arrays(self.l_array)
  47. def repeat_over_m(self, arr: Array, axis=0) -> Array:
  48. if not arr.shape[axis] == len(self.l_array):
  49. raise ValueError('Array length should be equal to the number of l in the expansion.')
  50. return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
  51. def rotate(self, rotations: Quaternion, rotate_existing=False):
  52. # TODO: rotations are currently saved wrong if we start form existing coefficients not the og ones
  53. self._rotations = rotations
  54. coefs = self.coefs if rotate_existing else self._starting_coefs
  55. self.coefs = expansion_rotation(rotations, coefs, self.l_array)
  56. def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False):
  57. # TODO: additional care required on the convention used to transform euler angles to quaternions
  58. # TODO: might be off for a minus sign for each? angle !!
  59. R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
  60. self.rotate(R_euler, rotate_existing=rotate_existing)
  61. def charge_value(self, theta: Array | float, phi: Array | float):
  62. if not isinstance(theta, Array):
  63. theta = np.array([theta])
  64. if not isinstance(phi, Array):
  65. phi = np.array([phi])
  66. theta, phi = np.broadcast_arrays(theta, phi)
  67. full_l_array, full_m_array = self.lm_arrays
  68. return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None],
  69. full_m_array[:, None],
  70. theta[None, :], phi[None, :]), axis=-2)))
  71. def clone(self) -> Expansion:
  72. return copy.deepcopy(self)
  73. class Expansion24(Expansion):
  74. def __init__(self, sigma2: float | Array, sigma4: float | Array, sigma0: float | Array = 0.):
  75. l_array = np.array([0, 2, 4])
  76. try:
  77. broadcasted_arrs = np.broadcast_arrays(np.sqrt(4*np.pi) * sigma0, sigma2, sigma4)
  78. except ValueError:
  79. raise ValueError("Given sigma0, sigma2 and sigma4 arrays cannot be broadcast to a common shape.")
  80. coefs = rot_sym_expansion(l_array, np.stack(broadcasted_arrs, axis=-1))
  81. super().__init__(l_array, coefs)
  82. class MappedExpansionQuad(Expansion):
  83. """Expansion that matches the outside potential of a quadrupolar impermeable particle with point charges inside."""
  84. def __init__(self,
  85. a_bar: Array | float,
  86. kappaR: Array | float,
  87. sigma_tilde: float,
  88. l_max: int = 20,
  89. sigma0: float | Array = 0):
  90. """
  91. :param a_bar: distance between the center and off center charges
  92. :param kappaR: screening parameter
  93. :param sigma_tilde: magnitude of off-center charges / 4pi R^2
  94. :param l_max: maximal ell value for the expansion
  95. :param sigma0: total (mean) charge density
  96. """
  97. if not isinstance(sigma0, Array):
  98. sigma0 = np.array([sigma0])
  99. if sigma0.ndim > 1:
  100. raise ValueError(f'Sigma0 parameter cannot be an array of dimensions larger than 1, got dim={sigma0.ndim}')
  101. a_bar_bc, kappaR_bc = np.broadcast_arrays(a_bar, kappaR)
  102. l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0])
  103. a_bar_bc2, kappaR_bc2, l_array_expanded = np.broadcast_arrays(a_bar_bc[..., None],
  104. kappaR_bc[..., None],
  105. l_array[None, :])
  106. coefs = (2 * sigma_tilde * fn.coef_C_diff(l_array_expanded, kappaR_bc2)
  107. * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar_bc2, l_array_expanded))
  108. coefs = np.squeeze(rot_sym_expansion(l_array, coefs))
  109. kappaR_bc3, sigma0_bc3 = np.broadcast_arrays(kappaR_bc[..., None], sigma0[None, :])
  110. coefs = expansion_total_charge(coefs, net_charge_map(sigma0_bc3, kappaR_bc3))
  111. super().__init__(l_array, np.squeeze(coefs))
  112. class GaussianCharges(Expansion):
  113. """Expansion for a collection of smeared charges on the sphere."""
  114. def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int,
  115. sigma0: float | Array = 0, equal_charges: bool = True):
  116. """
  117. :param omega_k: array of positions (theta, phi) of all charges
  118. :param lambda_k: smear parameter for each charge or smear for different cases (if equal_charges = True)
  119. :param sigma1: scaling
  120. :param l_max: maximal ell value for the expansion
  121. :param sigma0: total (mean) charge density
  122. :param equal_charges: if this is False, length of lambda_k should be N. If True, theta0_k array will be treated
  123. as different expansion cases
  124. """
  125. omega_k = omega_k.reshape(-1, 2)
  126. if not isinstance(lambda_k, Array):
  127. lambda_k = np.array([lambda_k])
  128. if equal_charges:
  129. if lambda_k.ndim > 1:
  130. raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}')
  131. lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T
  132. if lambda_k.shape[-1] != omega_k.shape[0]:
  133. raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.")
  134. lambda_k = lambda_k.reshape(-1, omega_k.shape[0])
  135. l_array = np.arange(l_max + 1)
  136. full_l_array, full_m_array = full_lm_arrays(l_array)
  137. theta_k = omega_k[:, 0]
  138. phi_k = omega_k[:, 1]
  139. summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :])
  140. * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :])
  141. * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None],
  142. theta_k[None, None, :], phi_k[None, None, :])))
  143. coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1))
  144. coefs = expansion_total_charge(coefs, sigma0)
  145. l_array, coefs = purge_unneeded_l(l_array, coefs)
  146. super().__init__(l_array, coefs)
  147. class SphericalCap(Expansion):
  148. """Expansion for a collection of spherical caps."""
  149. def __init__(self, omega_k: Array, theta0_k: Array | float, sigma1: float, l_max: int, sigma0: float | Array = 0,
  150. equal_sizes: bool = True):
  151. """
  152. :param omega_k: array of positions (theta, phi) of all spherical caps
  153. :param theta0_k: sizes of each spherical caps or cap sizes for different cases (if equal_sizes = True)
  154. :param sigma1: charge magnitude for the single cap, currently assumes that this is equal for all caps
  155. :param l_max: maximal ell value for the expansion
  156. :param sigma0: total (mean) charge density
  157. :param equal_sizes: if this is False, length of theta0_k should be N. If True, theta0_k array will be treated as
  158. different expansion cases
  159. """
  160. omega_k = omega_k.reshape(-1, 2)
  161. if not isinstance(theta0_k, Array):
  162. theta0_k = np.array(theta0_k)
  163. if equal_sizes:
  164. if theta0_k.ndim == 0:
  165. theta0_k = np.full(omega_k.shape[0], theta0_k)
  166. elif theta0_k.ndim == 1:
  167. theta0_k = np.full((omega_k.shape[0], theta0_k.shape[0]), theta0_k)
  168. else:
  169. raise ValueError(f'If equal_charges=True, theta0_k should be a 1D array, got shape {theta0_k.shape}')
  170. if theta0_k.shape[0] != omega_k.shape[0]:
  171. raise ValueError("Number of charges (length of omega_k) should match the last dimension of theta0_k array.")
  172. rotations = Quaternion(np.stack((np.cos(omega_k[..., 0] / 2),
  173. np.sin(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
  174. np.cos(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
  175. np.zeros_like(omega_k[..., 0]))).T)
  176. l_array = np.arange(l_max + 1)
  177. coefs_l0 = -sigma1 * (np.sqrt(np.pi / (2 * l_array[None, :] + 1)) *
  178. (eval_legendre(l_array[None, :] + 1, np.cos(theta0_k[..., None]))
  179. - eval_legendre(l_array[None, :] - 1, np.cos(theta0_k[..., None]))))
  180. coefs = rot_sym_expansion(l_array, coefs_l0)
  181. coefs_all_single_caps = expansion_rotation(rotations, coefs, l_array)
  182. # Rotating is implemented in such a way that it rotates every patch to every position,
  183. # hence the redundancy of out of diagonal elements.
  184. coefs_all = np.sum(np.diagonal(coefs_all_single_caps), axis=-1)
  185. coefs_all = expansion_total_charge(coefs_all, sigma0)
  186. super().__init__(l_array, np.squeeze(coefs_all))
  187. def net_charge_map(sigma0: float | Array, kappaR: float | Array):
  188. return sigma0 * np.exp(kappaR) / np.sinh(kappaR) * kappaR / (1 + kappaR)
  189. def full_lm_arrays(l_array: Array) -> (Array, Array):
  190. """From an array of l_values get arrays of ell and m that give you all pairs (ell, m)."""
  191. all_m_list = []
  192. for l in l_array:
  193. for i in range(2 * l + 1):
  194. all_m_list.append(-l + i)
  195. return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list)
  196. def rot_sym_expansion(l_array: Array, coefs: Array) -> Array:
  197. """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
  198. full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),))
  199. full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs
  200. return full_coefs
  201. def expansion_total_charge(coefs: Array, sigma0: float | Array | None):
  202. """Adds a new axis to the expansion coefficients that modifies expansion based on given net charge density."""
  203. if sigma0 is None:
  204. return coefs
  205. if not isinstance(sigma0, Array):
  206. x = copy.deepcopy(coefs)
  207. x[..., 0] = sigma0 * np.sqrt(4 * np.pi)
  208. return x
  209. # insert new axis in the 2nd-to-last place and repeat the expansion data over this new axis
  210. x = np.repeat(np.expand_dims(coefs, -2), sigma0.shape[-1], axis=-2)
  211. x[..., 0] = sigma0 * np.sqrt(4 * np.pi)
  212. return x
  213. def m_indices_at_l(l_arr: Array, l_idx: int):
  214. """
  215. For a given l_array and index l_idx for some ell in this array, get indices of all (ell, m) coefficients
  216. in coefficients array.
  217. """
  218. return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1))
  219. def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array):
  220. """Remove ell values from expansion for which all (ell, m) coefficients are zero."""
  221. def delete_zero_entries(l, l_arr, cfs):
  222. l_idx = np.where(l_arr == l)[0][0]
  223. m_indices = m_indices_at_l(l_arr, l_idx)
  224. if np.all(cfs[..., m_indices] == 0):
  225. return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1)
  226. return l_arr, cfs
  227. for l in l_array:
  228. l_array, coefs = delete_zero_entries(l, l_array, coefs)
  229. return l_array, coefs
  230. def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
  231. """Explicitly add missing expansion coefficients so that expansion includes all ell values from the target array."""
  232. missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
  233. fill = np.zeros(np.sum(2 * missing_l + 1))
  234. full_l_array1, _ = expansion.lm_arrays
  235. # we search for where to place missing coefs with the help of a boolean array and argmax function
  236. comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
  237. indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
  238. new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
  239. return Expansion(target_l_array, new_coefs)
  240. def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
  241. """Explicitly add zero expansion coefficients so that both expansions include coefficients for the same ell."""
  242. common_l_array = np.union1d(ex1.l_array, ex2.l_array)
  243. return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array)
  244. def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
  245. """
  246. General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
  247. with each expansion given in coefs array.
  248. :param rotations: Quaternion array, last dimension is 4
  249. :param coefs: array of expansion coefficients
  250. :param l_array: array of all ell values of the expansion
  251. :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
  252. """
  253. rot_arrays = rotations.ndarray.reshape((-1, 4))
  254. coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
  255. wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
  256. new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
  257. for i, l in enumerate(l_array):
  258. Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
  259. all_m_indices = m_indices_at_l(l_array, i)
  260. wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
  261. new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn',
  262. wm, coefs_reshaped[:, all_m_indices])
  263. return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)