potentials.py 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. import expansion
  2. import functions as fn
  3. import numpy as np
  4. import parameters
  5. import units_and_constants as uc
  6. import matplotlib.pyplot as plt
  7. Array = np.ndarray
  8. ModelParams = parameters.ModelParams
  9. Expansion = expansion.Expansion
  10. def charged_shell_potential(theta: Array | float,
  11. phi: Array | float,
  12. dist: float,
  13. ex: Expansion,
  14. params: ModelParams,
  15. print_idx: int = None) -> Array:
  16. """
  17. Electrostatic potential around a charged shell with patches given by expansion over spherical harmonics.
  18. :param theta: array of azimuthal angles
  19. :param phi: array of polar angles
  20. :param dist: distance between the particles in units of radius R
  21. :param ex: Expansion object detailing patch distribution
  22. :param params: ModelParams object specifying parameter values for the model
  23. :param print_idx: if not None, print a single term for debugging purposes
  24. """
  25. theta, phi = np.broadcast_arrays(theta, phi)
  26. angles_shape = theta.shape
  27. theta = theta.reshape(-1) # ensures that arrays are 1D
  28. phi = phi.reshape(-1)
  29. if not theta.shape == phi.shape:
  30. raise ValueError('theta and phi arrays should have the same shape.')
  31. l_array, m_array = ex.lm_arrays
  32. dist = dist * params.R
  33. l_factors = (fn.coefficient_Cpm(ex.l_array, params.kappaR) * fn.sph_bessel_k(ex.l_array, params.kappa * dist)
  34. / fn.sph_bessel_k(ex.l_array, params.kappaR))
  35. l_factors = ex.repeat_over_m(l_factors)
  36. factors = l_factors[:, None] * ex.coefs[..., None] * fn.sph_harm(l_array[:, None], m_array[:, None], theta[None, :], phi[None, :])
  37. if print_idx is not None:
  38. print(l_array[print_idx], m_array[print_idx], np.real(factors[print_idx]))
  39. pot = (1 / (params.kappa * params.epsilon * uc.CONSTANTS.epsilon0) * np.real(np.sum(factors, axis=-2)))
  40. return pot.reshape(ex.shape + angles_shape)
  41. if __name__ == '__main__':
  42. params = ModelParams(R=150, kappaR=3)
  43. ex1 = expansion.MappedExpansionQuad(0.44, params.kappaR, 0.001, l_max=30)
  44. ex2 = expansion.SphericalCap(np.array([[0, 0], [np.pi, 0]]), 0.5, 0.003, l_max=70)
  45. theta = np.linspace(0, np.pi, 1000)
  46. phi = 0.
  47. dist = 1
  48. potential1 = charged_shell_potential(theta, phi, dist, ex1, params)
  49. potential2 = charged_shell_potential(theta, phi, dist, ex2, params)
  50. # print(potential.shape)
  51. # print(potential)
  52. plt.plot(theta, potential1.T)
  53. plt.plot(theta, potential2.T)
  54. plt.show()