expansion_plot.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970
  1. from charged_shells import expansion
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from pathlib import Path
  5. import plotly.graph_objects as go
  6. Expansion = expansion.Expansion
  7. def plot_theta_profile(ex: Expansion, phi: float = 0, num: int = 100, theta_start: float = 0, theta_end: float = np.pi):
  8. theta_vals = np.linspace(theta_start, theta_end, num)
  9. charge = ex.charge_value(theta_vals, phi)
  10. plt.plot(theta_vals, charge.T)
  11. plt.show()
  12. def plot_theta_profile_multiple(ex_list: list[Expansion], label_list, phi: float = 0, num: int = 100,
  13. theta_start: float = 0, theta_end: float = np.pi):
  14. theta_vals = np.linspace(theta_start, theta_end, num)
  15. fig, ax = plt.subplots()
  16. for ex, label in zip(ex_list, label_list):
  17. ax.plot(theta_vals, ex.charge_value(theta_vals, phi).T, label=label)
  18. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
  19. ax.set_xlabel(r'$\theta$', fontsize=13)
  20. ax.set_ylabel(r'$\sigma$', fontsize=13)
  21. plt.legend(fontsize=12)
  22. plt.tight_layout()
  23. plt.savefig(Path("/home/andraz/ChargedShells/Figures/charge_shape_comparison.png"), dpi=600)
  24. plt.show()
  25. def plot_charge_3d(ex: Expansion, num_theta=100, num_phi=100):
  26. theta = np.linspace(0, np.pi, num_theta)
  27. phi = np.linspace(0, 2 * np.pi, num_phi)
  28. theta, phi = np.meshgrid(theta, phi)
  29. r = ex.charge_value(theta.flatten(), phi.flatten()).reshape(theta.shape)
  30. # Convert spherical coordinates to Cartesian coordinates
  31. x = np.sin(theta) * np.cos(phi)
  32. y = np.sin(theta) * np.sin(phi)
  33. z = np.cos(theta)
  34. # Create a heatmap on the sphere
  35. fig = go.Figure(data=go.Surface(x=x, y=y, z=z, surfacecolor=r, colorscale='Jet'))
  36. fig.update_layout(scene=dict(aspectmode='data'))
  37. fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
  38. fig.show()
  39. def main():
  40. # ex = expansion.MappedExpansionQuad(0.44, 3, 1, 10)
  41. # ex = expansion.Expansion(np.arange(3), np.array([1, -1, 0, 1, 2, 0, 3, 0, 2]))
  42. # ex = expansion.GaussianCharges(omega_k=np.array([[0, 0], [np.pi, 0]]), lambda_k=10, sigma1=0.001, l_max=10)
  43. ex = expansion.SphericalCap(np.array([[0, 0], [np.pi, 0]]), 0.5, 0.1, 30)
  44. # print(np.real(ex.coefs))
  45. # plot_theta_profile(ex, num=1000, theta_end=2 * np.pi, phi=0)
  46. plot_charge_3d(ex)
  47. # new_coeffs = expanison.expansion_rotation(Quaternion(np.arange(20).reshape(5, 4)).normalized, ex.coeffs, ex.l_array)
  48. # print(new_coeffs.shape)
  49. #
  50. # newnew_coeffs = expansion.expansion_rotation(Quaternion(np.arange(16).reshape(4, 4)).normalized, new_coeffs, ex.l_array)
  51. # print(newnew_coeffs.shape)
  52. if __name__ == '__main__':
  53. main()