123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- from __future__ import annotations
- import numpy as np
- from dataclasses import dataclass
- from functools import cached_property
- import charged_shells.functions as fn
- import quaternionic
- import spherical
- import copy
- from scipy.special import eval_legendre
- Array = np.ndarray
- Quaternion = quaternionic.array
- class InvalidExpansion(Exception):
- pass
- @dataclass
- class Expansion:
- """Generic class for storing surface charge expansion coefficients."""
- l_array: Array
- coefs: Array
- _starting_coefs: Array = None # initialized with the __post_init__ method
- _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
- def __post_init__(self):
- if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
- raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
- if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
- raise InvalidExpansion('Array of l values should be unique and sorted.')
- self.coefs = self.coefs.astype(np.complex128)
- self._starting_coefs = np.copy(self.coefs)
- def __getitem__(self, item):
- return Expansion(self.l_array, self.coefs[item])
- @property
- def max_l(self) -> int:
- return max(self.l_array)
- @property
- def shape(self):
- return self.coefs.shape[:-1]
- def flatten(self) -> Expansion:
- new_expansion = self.clone() # np.ndarray.flatten() also copies the array
- new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1])
- new_expansion._rotations = new_expansion._rotations.reshape(-1, 4)
- return new_expansion
- def reshape(self, shape: tuple):
- self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],))
- self._rotations = self._rotations.reshape(shape + (4,))
- @cached_property
- def lm_arrays(self) -> (Array, Array):
- """Return l and m arrays containing all (l, m) pairs."""
- return full_lm_arrays(self.l_array)
- def repeat_over_m(self, arr: Array, axis=0) -> Array:
- if not arr.shape[axis] == len(self.l_array):
- raise ValueError('Array length should be equal to the number of l in the expansion.')
- return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
- def rotate(self, rotations: Quaternion, rotate_existing=False):
- # TODO: rotations are currently saved wrong if we start form existing coefficients not the og ones
- self._rotations = rotations
- coefs = self.coefs if rotate_existing else self._starting_coefs
- self.coefs = expansion_rotation(rotations, coefs, self.l_array)
- def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False):
- # TODO: additional care required on the convention used to transform euler angles to quaternions
- # TODO: might be off for a minus sign for each? angle !!
- R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
- self.rotate(R_euler, rotate_existing=rotate_existing)
- def charge_value(self, theta: Array | float, phi: Array | float):
- if not isinstance(theta, Array):
- theta = np.array([theta])
- if not isinstance(phi, Array):
- phi = np.array([phi])
- theta, phi = np.broadcast_arrays(theta, phi)
- full_l_array, full_m_array = self.lm_arrays
- return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None],
- full_m_array[:, None],
- theta[None, :], phi[None, :]), axis=-2)))
- def clone(self) -> Expansion:
- return copy.deepcopy(self)
- class Expansion24(Expansion):
- def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.):
- l_array = np.array([0, 2, 4])
- coefs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4]))
- super().__init__(l_array, coefs)
- class MappedExpansionQuad(Expansion):
- """Expansion that matches the outside potential of a quadrupolar impermeable particle with point charges inside."""
- def __init__(self,
- a_bar: Array | float,
- kappaR: Array | float,
- sigma_tilde: float,
- l_max: int = 20,
- sigma0: float | Array = 0):
- """
- :param a_bar: distance between the center and off center charges
- :param kappaR: screening parameter
- :param sigma_tilde: magnitude of off-center charges / 4pi R^2
- :param l_max: maximal ell value for the expansion
- :param sigma0: total (mean) charge density
- """
- a_bar, kappaR = np.broadcast_arrays(a_bar, kappaR)
- l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0])
- a_bar, kappaR, l_array_expanded = np.broadcast_arrays(a_bar[..., None],
- kappaR[..., None],
- l_array[None, :])
- coefs = (2 * sigma_tilde * fn.coef_C_diff(l_array_expanded, kappaR)
- * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar, l_array_expanded))
- coefs = np.squeeze(rot_sym_expansion(l_array, coefs))
- coefs = expansion_total_charge(coefs, sigma0)
- super().__init__(l_array, coefs)
- class GaussianCharges(Expansion):
- """Expansion for a collection of smeared charges on the sphere."""
- def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int,
- sigma0: float | Array = 0, equal_charges: bool = True):
- """
- :param omega_k: array of positions (theta, phi) of all charges
- :param lambda_k: smear parameter for each charge or smear for different cases (if equal_charges = True)
- :param sigma1: scaling
- :param l_max: maximal ell value for the expansion
- :param sigma0: total (mean) charge density
- :param equal_charges: if this is False, length of lambda_k should be N. If True, theta0_k array will be treated
- as different expansion cases
- """
- omega_k = omega_k.reshape(-1, 2)
- if not isinstance(lambda_k, Array):
- lambda_k = np.array([lambda_k])
- if equal_charges:
- if lambda_k.ndim > 1:
- raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}')
- lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T
- if lambda_k.shape[-1] != omega_k.shape[0]:
- raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.")
- lambda_k = lambda_k.reshape(-1, omega_k.shape[0])
- l_array = np.arange(l_max + 1)
- full_l_array, full_m_array = full_lm_arrays(l_array)
- theta_k = omega_k[:, 0]
- phi_k = omega_k[:, 1]
- summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :])
- * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :])
- * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None],
- theta_k[None, None, :], phi_k[None, None, :])))
- coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1))
- coefs = expansion_total_charge(coefs, sigma0)
- l_array, coefs = purge_unneeded_l(l_array, coefs)
- super().__init__(l_array, coefs)
- class SphericalCap(Expansion):
- """Expansion for a collection of spherical caps."""
- def __init__(self, omega_k: Array, theta0_k: Array | float, sigma1: float, l_max: int, sigma0: float | Array = 0,
- equal_sizes: bool = True):
- """
- :param omega_k: array of positions (theta, phi) of all spherical caps
- :param theta0_k: sizes of each spherical caps or cap sizes for different cases (if equal_sizes = True)
- :param sigma1: charge magnitude for the single cap, currently assumes that this is equal for all caps
- :param l_max: maximal ell value for the expansion
- :param sigma0: total (mean) charge density
- :param equal_sizes: if this is False, length of theta0_k should be N. If True, theta0_k array will be treated as
- different expansion cases
- """
- omega_k = omega_k.reshape(-1, 2)
- if not isinstance(theta0_k, Array):
- theta0_k = np.array(theta0_k)
- if equal_sizes:
- if theta0_k.ndim == 0:
- theta0_k = np.full(omega_k.shape[0], theta0_k)
- elif theta0_k.ndim == 1:
- theta0_k = np.full((omega_k.shape[0], theta0_k.shape[0]), theta0_k)
- else:
- raise ValueError(f'If equal_charges=True, theta0_k should be a 1D array, got shape {theta0_k.shape}')
- if theta0_k.shape[0] != omega_k.shape[0]:
- raise ValueError("Number of charges (length of omega_k) should match the last dimension of theta0_k array.")
- rotations = Quaternion(np.stack((np.cos(omega_k[..., 0] / 2),
- np.sin(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
- np.cos(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
- np.zeros_like(omega_k[..., 0]))).T)
- l_array = np.arange(l_max + 1)
- coefs_l0 = -sigma1 * (np.sqrt(np.pi / (2 * l_array[None, :] + 1)) *
- (eval_legendre(l_array[None, :] + 1, np.cos(theta0_k[..., None]))
- - eval_legendre(l_array[None, :] - 1, np.cos(theta0_k[..., None]))))
- coefs = rot_sym_expansion(l_array, coefs_l0)
- coefs_all_single_caps = expansion_rotation(rotations, coefs, l_array)
- # Rotating is implemented in such a way that it rotates every patch to every position,
- # hence the redundancy of out of diagonal elements.
- coefs_all = np.sum(np.diagonal(coefs_all_single_caps), axis=-1)
- coefs_all = expansion_total_charge(coefs_all, sigma0)
- super().__init__(l_array, np.squeeze(coefs_all))
- def full_lm_arrays(l_array: Array) -> (Array, Array):
- """From an array of l_values get arrays of ell and m that give you all pairs (ell, m)."""
- all_m_list = []
- for l in l_array:
- for i in range(2 * l + 1):
- all_m_list.append(-l + i)
- return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list)
- def rot_sym_expansion(l_array: Array, coefs: Array) -> Array:
- """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
- full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),))
- full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs
- return full_coefs
- def expansion_total_charge(coefs: Array, sigma0: float | Array):
- """Adds a new axis to the expansion coefficients that modifies expansion based on given net charge density."""
- if sigma0 is None:
- return coefs
- if not isinstance(sigma0, Array):
- x = copy.deepcopy(coefs)
- x[..., 0] = sigma0 / np.sqrt(4 * np.pi)
- return x
- sigma0 = sigma0.flatten()
- x = np.repeat(np.expand_dims(coefs, -2), len(sigma0), axis=-2)
- x[..., 0] = sigma0 / np.sqrt(4 * np.pi)
- return x
- def m_indices_at_l(l_arr: Array, l_idx: int):
- """
- For a given l_array and index l_idx for some ell in this array, get indices of all (ell, m) coefficients
- in coefficients array.
- """
- return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1))
- def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array):
- """Remove ell values from expansion for which all (ell, m) coefficients are zero."""
- def delete_zero_entries(l, l_arr, cfs):
- l_idx = np.where(l_arr == l)[0][0]
- m_indices = m_indices_at_l(l_arr, l_idx)
- if np.all(cfs[..., m_indices] == 0):
- return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1)
- return l_arr, cfs
- for l in l_array:
- l_array, coefs = delete_zero_entries(l, l_array, coefs)
- return l_array, coefs
- def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
- """Explicitly add missing expansion coefficients so that expansion includes all ell values from the target array."""
- missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
- fill = np.zeros(np.sum(2 * missing_l + 1))
- full_l_array1, _ = expansion.lm_arrays
- # we search for where to place missing coefs with the help of a boolean array and argmax function
- comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
- indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
- new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
- return Expansion(target_l_array, new_coefs)
- def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
- """Explicitly add zero expansion coefficients so that both expansions include coefficients for the same ell."""
- common_l_array = np.union1d(ex1.l_array, ex2.l_array)
- return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array)
- def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
- """
- General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
- with each expansion given in coefs array.
- :param rotations: Quaternion array, last dimension is 4
- :param coefs: array of expansion coefficients
- :param l_array: array of all ell values of the expansion
- :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
- """
- rot_arrays = rotations.ndarray.reshape((-1, 4))
- coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
- wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
- new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
- for i, l in enumerate(l_array):
- Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
- all_m_indices = m_indices_at_l(l_array, i)
- wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
- new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn',
- wm, coefs_reshaped[:, all_m_indices])
- return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)
|