rotational_path.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. import numpy as np
  2. from dataclasses import dataclass, field
  3. import quaternionic
  4. from charged_shells import expansion, interactions, mapping
  5. from charged_shells.parameters import ModelParams
  6. import matplotlib.pyplot as plt
  7. from pathlib import Path
  8. from functools import partial
  9. Quaternion = quaternionic.array
  10. Array = np.ndarray
  11. Expansion = expansion.Expansion
  12. @dataclass
  13. class PairRotationalPath:
  14. rotations1: list[Quaternion] = field(default_factory=list)
  15. rotations2: list[Quaternion] = field(default_factory=list)
  16. x_axis: list[Array] = field(default_factory=list)
  17. overlapping_last: bool = True
  18. _default_x_axis: Array = None
  19. def add(self, rotation1: Quaternion, rotation2: Quaternion, x_axis: Array = None):
  20. rotation1, rotation2 = np.broadcast_arrays(rotation1, rotation2)
  21. self.rotations1.append(Quaternion(rotation1))
  22. self.rotations2.append(Quaternion(rotation2))
  23. if x_axis is None:
  24. x_axis = np.arange(len(rotation1)) if self._default_x_axis is None else self._default_x_axis
  25. self.add_x_axis(x_axis)
  26. def add_x_axis(self, x_axis: Array):
  27. try:
  28. last_x_val = self.x_axis[-1][-1]
  29. except IndexError:
  30. last_x_val = 0
  31. if self.overlapping_last:
  32. self.x_axis.append(x_axis + last_x_val)
  33. else:
  34. raise NotImplementedError('Currently only overlapping end points for x-axes are supported.')
  35. def set_default_x_axis(self, default_x_axis: Array):
  36. self._default_x_axis = default_x_axis
  37. def add_euler(self, *, alpha1: Array = 0, beta1: Array = 0, gamma1: Array = 0,
  38. alpha2: Array = 0, beta2: Array = 0, gamma2: Array = 0,
  39. x_axis: Array = None):
  40. R1_euler = quaternionic.array.from_euler_angles(alpha1, beta1, gamma1)
  41. R2_euler = quaternionic.array.from_euler_angles(alpha2, beta2, gamma2)
  42. self.add(Quaternion(R1_euler), Quaternion(R2_euler), x_axis)
  43. def stack_rotations(self) -> (Quaternion, Quaternion):
  44. return Quaternion(np.vstack(self.rotations1)), Quaternion(np.vstack(self.rotations2))
  45. def stack_x_axes(self) -> Array:
  46. return np.hstack(self.x_axis)
  47. @dataclass
  48. class PathEnergyPlot:
  49. """Path comparison for a pair of charge distributions, possibly at different parameter values."""
  50. expansion1: Expansion
  51. expansion2: Expansion
  52. rot_path: PairRotationalPath
  53. dist: float | Array
  54. params: ModelParams
  55. match_expansion_axis_to_params: int | None = None
  56. units: interactions.EnergyUnit = 'kT'
  57. def __post_init__(self):
  58. if not isinstance(self.dist, Array):
  59. self.dist = np.array([self.dist])
  60. def evaluate_energy(self):
  61. energy = []
  62. for dist in self.dist:
  63. energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy,
  64. dist=dist, units=self.units),
  65. self.match_expansion_axis_to_params)
  66. energy.append(energy_fn(self.expansion1, self.expansion2, self.params))
  67. return np.squeeze(np.stack(energy, axis=-1))
  68. def path_energy(self):
  69. rotations1, rotations2 = self.rot_path.stack_rotations()
  70. self.expansion1.rotate(rotations1)
  71. self.expansion2.rotate(rotations2)
  72. return self.evaluate_energy()
  73. def section_energies(self):
  74. energy_list = []
  75. for rot1, rot2 in zip(self.rot_path.rotations1, self.rot_path.rotations2):
  76. self.expansion1.rotate(rot1)
  77. self.expansion2.rotate(rot2)
  78. energy_list.append(self.evaluate_energy())
  79. return energy_list
  80. def normalization(self, norm_euler_angles: dict):
  81. if norm_euler_angles is None:
  82. return np.array([1.])
  83. self.expansion1.rotate_euler(alpha=norm_euler_angles.get('alpha1', 0),
  84. beta=norm_euler_angles.get('beta1', 0),
  85. gamma=norm_euler_angles.get('gamma1', 0))
  86. self.expansion2.rotate_euler(alpha=norm_euler_angles.get('alpha2', 0),
  87. beta=norm_euler_angles.get('beta2', 0),
  88. gamma=norm_euler_angles.get('gamma2', 0))
  89. return np.abs(self.evaluate_energy())
  90. def evaluate_path(self, norm_euler_angles: dict = None):
  91. energy = self.path_energy()
  92. normalization = self.normalization(norm_euler_angles)
  93. energy = energy / normalization[None, ...]
  94. energy = energy.reshape(energy.shape[0], -1)
  95. return np.squeeze(energy)
  96. def plot(self, labels: list[str] = None, norm_euler_angles: dict = None, save_as: Path = None):
  97. energy = self.evaluate_path(norm_euler_angles=norm_euler_angles)
  98. x_axis = self.rot_path.stack_x_axes()
  99. fig, ax = plt.subplots()
  100. ax.axhline(y=0, c='k', linestyle=':')
  101. ax.plot(x_axis, np.squeeze(energy), label=labels)
  102. ax.legend(fontsize=12)
  103. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
  104. ax.set_xlabel('angle', fontsize=13)
  105. ax.set_ylabel('U', fontsize=13)
  106. plt.tight_layout()
  107. if save_as is not None:
  108. plt.savefig(save_as, dpi=600)
  109. plt.show()
  110. def plot_sections(self, norm_euler_angles: dict = None, save_as: Path = None):
  111. energy_list = self.section_energies()
  112. normalization = self.normalization(norm_euler_angles)
  113. fig, ax = plt.subplots()
  114. ax.axhline(y=0, c='k', linestyle=':')
  115. for x_axis, energy in zip(self.rot_path.x_axis, energy_list):
  116. energy, norm = np.broadcast_arrays(energy, normalization)
  117. ax.plot(x_axis, energy / norm)
  118. # ax.legend(fontsize=12)
  119. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
  120. ax.set_xlabel('angle', fontsize=13)
  121. ax.set_ylabel('U', fontsize=13)
  122. if save_as is not None:
  123. plt.savefig(save_as, dpi=600)
  124. plt.show()
  125. @dataclass
  126. class PathExpansionComparison:
  127. """Path comparison for different charge distribution models."""
  128. ex_list: list[Expansion]
  129. rot_path: PairRotationalPath
  130. dist: float
  131. params: ModelParams
  132. path_list: list[PathEnergyPlot] = field(default_factory=list)
  133. def __post_init__(self):
  134. for ex in self.ex_list:
  135. self.path_list.append(PathEnergyPlot(ex, ex.clone(), self.rot_path, self.dist, self.params))
  136. def evaluate_path(self, norm_euler_angles: dict = None):
  137. path_vals = []
  138. for path in self.path_list:
  139. path_vals.append(path.evaluate_path(norm_euler_angles))
  140. return np.squeeze(np.stack(path_vals))
  141. def plot(self, labels: list[str] = None, norm_euler_angles: dict = None, save_as: Path = None):
  142. energy = self.evaluate_path(norm_euler_angles=norm_euler_angles)
  143. x_axis = self.rot_path.stack_x_axes()
  144. fig, ax = plt.subplots()
  145. ax.axhline(y=0, c='k', linestyle=':')
  146. ax.plot(x_axis, energy, label=labels)
  147. ax.legend(fontsize=12)
  148. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
  149. ax.set_xlabel('angle', fontsize=13)
  150. ax.set_ylabel('U', fontsize=13)
  151. plt.tight_layout()
  152. if save_as is not None:
  153. plt.savefig(save_as, dpi=600)
  154. plt.show()