123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- from __future__ import annotations
- import numpy as np
- from dataclasses import dataclass
- from functools import cached_property
- import functions as fn
- import quaternionic
- import spherical
- import time
- import copy
- import matplotlib.pyplot as plt
- from typing import Callable, TypeVar
- Array = np.ndarray
- Quaternion = quaternionic.array
- T = TypeVar('T')
- V = TypeVar('V')
- class InvalidExpansion(Exception):
- pass
- @dataclass
- class Expansion:
- """Generic class for storing surface charge expansion coefficients."""
- l_array: Array
- coefs: Array
- _starting_coefs: Array = None # initialized with the __post_init__ method
- _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
- def __post_init__(self):
- if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
- raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
- if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
- raise InvalidExpansion('Array of l values should be unique and sorted.')
- self.coefs = self.coefs.astype(np.complex128)
- self._starting_coefs = np.copy(self.coefs)
- def __getitem__(self, item):
- return Expansion(self.l_array, self.coefs[item])
- @property
- def max_l(self) -> int:
- return max(self.l_array)
- @property
- def shape(self):
- return self.coefs.shape[:-1]
- def flatten(self) -> Expansion:
- new_expansion = self.clone() # np.ndarray.flatten() also copies the array
- new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1])
- new_expansion._rotations = new_expansion._rotations.reshape(-1, 4)
- return new_expansion
- def reshape(self, shape: tuple):
- self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],))
- self._rotations = self._rotations.reshape(shape + (4,))
- @cached_property
- def lm_arrays(self) -> (Array, Array):
- """Return l and m arrays containing all (l, m) pairs."""
- return full_fm_arrays(self.l_array)
- def repeat_over_m(self, arr: Array, axis=0) -> Array:
- if not arr.shape[axis] == len(self.l_array):
- raise ValueError('Array length should be equal to the number of l in the expansion.')
- return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
- def rotate(self, rotations: Quaternion, rotate_existing=False):
- # TODO: rotations are currently saved wrong if we start form existing coefficients not the og ones
- self._rotations = rotations
- coefs = self.coefs if rotate_existing else self._starting_coefs
- self.coefs = expansion_rotation(rotations, coefs, self.l_array)
- def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False):
- # TODO: additional care required on the convention used to transform euler angles to quaternions
- # TODO: might be off for a minus sign for each? angle !!
- R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
- self.rotate(R_euler, rotate_existing=rotate_existing)
- def charge_value(self, theta: Array | float, phi: Array | float):
- if not isinstance(theta, Array):
- theta = np.array([theta])
- if not isinstance(phi, Array):
- phi = np.array([phi])
- theta, phi = np.broadcast_arrays(theta, phi)
- full_l_array, full_m_array = self.lm_arrays
- return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None],
- full_m_array[:, None],
- theta[None, :], phi[None, :]), axis=-2)))
- def clone(self) -> Expansion:
- return copy.deepcopy(self)
- class Expansion24(Expansion):
- def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.):
- l_array = np.array([0, 2, 4])
- coefs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4]))
- super().__init__(l_array, coefs)
- class MappedExpansionQuad(Expansion):
- def __init__(self, a_bar: Array | float, kappaR: Array | float, sigma_m: float, l_max: int = 20, sigma0: float = 0):
- a_bar, kappaR = np.broadcast_arrays(a_bar, kappaR)
- l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0])
- a_bar, kappaR, l_array_expanded = np.broadcast_arrays(a_bar[..., None], kappaR[..., None], l_array[None, :])
- coefs = (2 * sigma_m * fn.coef_C_diff(l_array_expanded, kappaR)
- * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar, l_array_expanded))
- coefs[..., 0] = sigma0
- coefs = rot_sym_expansion(l_array, coefs)
- super().__init__(l_array, coefs)
- class GaussianCharges(Expansion):
- def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int,
- sigma0: float = 0, equal_charges=True):
- omega_k = omega_k.reshape(-1, 2)
- if not isinstance(lambda_k, Array):
- lambda_k = np.array([lambda_k])
- if equal_charges:
- if lambda_k.ndim > 1:
- raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}')
- lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T
- if lambda_k.shape[-1] != omega_k.shape[0]:
- raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.")
- lambda_k = lambda_k.reshape(-1, omega_k.shape[0])
- l_array = np.arange(l_max + 1)
- full_l_array, full_m_array = full_fm_arrays(l_array)
- theta_k = omega_k[:, 0]
- phi_k = omega_k[:, 1]
- summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :])
- * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :])
- * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None],
- theta_k[None, None, :], phi_k[None, None, :])))
- coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1))
- coefs[..., 0] = sigma0
- l_array, coefs = purge_unneeded_l(l_array, coefs)
- super().__init__(l_array, coefs)
- def map_over_expansion(f: Callable[[Expansion, T], V]) -> Callable[[Expansion, T], V]:
- """Map a function f over the leading axes of an expansion. Uses for loops, so it is kinda slow."""
- def mapped_f(ex: Expansion, *args, **kwargs):
- og_shape = ex.shape
- flat_ex = ex.flatten()
- results = []
- for i in range(np.prod(og_shape)):
- results.append(f(flat_ex[i], *args, **kwargs))
- try:
- return np.array(results).reshape(og_shape + results[0].shape)
- except AttributeError:
- return np.array(results).reshape(og_shape)
- return mapped_f
- def full_fm_arrays(l_array: Array) -> (Array, Array):
- all_m_list = []
- for l in l_array:
- for i in range(2 * l + 1):
- all_m_list.append(-l + i)
- return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list)
- def rot_sym_expansion(l_array: Array, coefs: Array) -> Array:
- """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
- full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),))
- full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs
- return full_coefs
- def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
- missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
- fill = np.zeros(np.sum(2 * missing_l + 1))
- full_l_array1, _ = expansion.lm_arrays
- # we search for where to place missing coefs with the help of a boolean array and argmax function
- comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
- indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
- new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
- return Expansion(target_l_array, new_coefs)
- def m_indices_at_l(l_arr: Array, l_idx: int):
- return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1))
- def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array):
- def delete_zero_entries(l, l_arr, cfs):
- l_idx = np.where(l_arr == l)[0][0]
- m_indices = m_indices_at_l(l_arr, l_idx)
- if np.all(cfs[..., m_indices] == 0):
- return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1)
- return l_arr, cfs
- for l in l_array:
- l_array, coefs = delete_zero_entries(l, l_array, coefs)
- return l_array, coefs
- def plot_theta_profile(ex: Expansion, phi=0, num=100):
- theta_vals = np.linspace(0, np.pi, num)
- charge = ex.charge_value(theta_vals, phi)
- plt.plot(theta_vals, charge)
- plt.show()
- def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
- common_l_array = np.union1d(ex1.l_array, ex2.l_array)
- return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array)
- def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
- """
- General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
- with each expansion given in coefs array.
- :param rotations: Quaternion array, last dimension is 4
- :param coefs: array of expansion coefficients
- :param l_array: array of all ell values of the expansion
- :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
- """
- rot_arrays = rotations.ndarray.reshape((-1, 4))
- coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
- wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
- new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
- for i, l in enumerate(l_array):
- Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
- all_m_indices = m_indices_at_l(l_array, i)
- wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
- new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn',
- wm, coefs_reshaped[:, all_m_indices])
- return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)
- if __name__ == '__main__':
- # ex = MappedExpansionQuad(0.44, 3, 1, 10)
- # ex = Expansion(np.arange(3), np.array([1, -1, 0, 1, 2, 0, 3, 0, 2]))
- ex = GaussianCharges(omega_k=np.array([[0, 0], [np.pi, 0]]), lambda_k=10, sigma1=0.001, l_max=10)
- # print(ex.coefs)
- plot_theta_profile(ex)
- # new_coeffs = expansion_rotation(Quaternion(np.arange(20).reshape(5, 4)).normalized, ex.coeffs, ex.l_array)
- # print(new_coeffs.shape)
- #
- # newnew_coeffs = expansion_rotation(Quaternion(np.arange(16).reshape(4, 4)).normalized, new_coeffs, ex.l_array)
- # print(newnew_coeffs.shape)
- # rot_angles = np.linspace(0, np.pi, 1000)
- # t0 = time.time()
- # ex.rotate_euler(0, np.pi / 2, -1)
- # t1 = time.time()
- # print(ex.coefs)
- # print(t1 - t0)
|