potentials.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. import expansion
  2. import functions as fn
  3. import numpy as np
  4. import parameters
  5. import units_and_constants as uc
  6. import matplotlib.pyplot as plt
  7. Array = np.ndarray
  8. ModelParams = parameters.ModelParams
  9. Expansion = expansion.Expansion
  10. def charged_shell_potential(theta: Array | float,
  11. phi: Array | float,
  12. dist: float,
  13. ex: Expansion,
  14. params: ModelParams) -> Array:
  15. """
  16. Electrostatic potential around a charged shell with patches given by expansion over spherical harmonics.
  17. :param theta: array of azimuthal angles
  18. :param phi: array of polar angles
  19. :param dist: distance between the particles in units of radius R
  20. :param ex: Expansion object detailing patch distribution
  21. :param params: ModelParams object specifying parameter values for the model
  22. """
  23. theta, phi = np.broadcast_arrays(theta, phi)
  24. angles_shape = theta.shape
  25. theta = theta.reshape(-1) # ensures that arrays are 1D
  26. phi = phi.reshape(-1)
  27. if not theta.shape == phi.shape:
  28. raise ValueError('theta and phi arrays should have the same shape.')
  29. l_array, m_array = ex.lm_arrays
  30. dist = dist * params.R
  31. l_factors = (fn.coefficient_Cpm(ex.l_array, params.kappaR) * fn.sph_bessel_k(ex.l_array, params.kappa * dist)
  32. / fn.sph_bessel_k(ex.l_array, params.kappaR))
  33. l_factors = ex.repeat_over_m(l_factors)
  34. pot = (1 / (params.kappa * params.epsilon * uc.CONSTANTS.epsilon0)
  35. * np.real(np.sum(l_factors[:, None] * ex.coefs[..., None]
  36. * fn.sph_harm(l_array[:, None], m_array[:, None], theta[None, :], phi[None, :]), axis=-2)))
  37. return pot.reshape(ex.shape + angles_shape)
  38. if __name__ == '__main__':
  39. params = ModelParams(R=150, kappaR=3)
  40. ex = expansion.MappedExpansionQuad(np.array([0.44, 0.5]), params.kappaR, 0.001, l_max=10)
  41. theta = np.linspace(0, np.pi, 1000)
  42. phi = 0.
  43. dist = 1
  44. potential = charged_shell_potential(theta, phi, dist, ex, params)
  45. print(potential.shape)
  46. # print(potential)
  47. plt.plot(theta, potential.T)
  48. plt.show()