123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import numpy as np
- from dataclasses import dataclass
- from functools import cached_property
- import functions as fn
- Array = np.ndarray
- class InvalidExpansion(Exception):
- pass
- @dataclass
- class Expansion:
- """Generic class for storing surface charge expansion coefficients."""
- l_array: Array
- coeffs: Array
- def __post_init__(self):
- """Validation of the given expansion."""
- if len(self.coeffs) != np.sum(2 * self.l_array + 1):
- raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
- if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
- raise InvalidExpansion('Array of l values should be unique and sorted.')
- @cached_property
- def max_l(self) -> int:
- return max(self.l_array)
- @cached_property
- def lm_arrays(self) -> (Array, Array):
- """Return l and m arrays containing all (l, m) pairs."""
- all_m_list = []
- for l in self.l_array:
- for i in range(2 * l + 1):
- all_m_list.append(-l + i)
- return np.repeat(self.l_array, 2 * self.l_array + 1), np.array(all_m_list)
- def repeat_over_m(self, arr: Array, axis=0):
- if not arr.shape[axis] == len(self.l_array):
- raise ValueError('Array length should be equal to the number of l in the expansion.')
- return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
- def sph_sym_expansion(l_array: Array, coeffs: Array) -> Array:
- """Create full expansion array for spherically symmetric distributions with only m=0 terms different form 0."""
- full_coeffs = np.zeros(np.sum(2 * l_array + 1))
- full_coeffs[np.cumsum(2 * l_array + 1) - l_array - 1] = coeffs
- return full_coeffs
- class Expansion24(Expansion):
- def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.):
- l_array = np.array([0, 2, 4])
- coeffs = sph_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4]))
- super().__init__(l_array, coeffs)
- class MappedExpansion(Expansion):
- def __init__(self, a_bar: float, kappaR: float, sigma_m: float, max_l: int = 20, sigma0: float = 0):
- l_array = np.array([l for l in range(max_l + 1) if l % 2 == 0])
- coeffs = (2 * sigma_m * fn.coeff_C_diff(l_array, kappaR)
- * np.sqrt(4 * np.pi * (2 * l_array + 1)) * np.power(a_bar, l_array))
- coeffs[0] = sigma0
- coeffs = sph_sym_expansion(l_array, coeffs)
- super().__init__(l_array, coeffs)
- if __name__ == '__main__':
- ex = MappedExpansion(0.44, 3, 1, 10)
- print(ex.coeffs)
|