123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- from matplotlib import gridspec
- from charged_shells import expansion, interactions, mapping, functions, charge_distributions
- from charged_shells.parameters import ModelParams
- import numpy as np
- from typing import Literal
- from functools import partial
- from config import *
- from plot_settings import *
- import peak_heigth
- Array = np.ndarray
- Expansion = expansion.Expansion
- class JanusPeakPP(peak_heigth.Peak):
- def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
- self.emanuele_data_column = 3
- self.y_label = r'$V_\mathrm{PP, 1}$'
- self.ex1 = ex.clone()
- self.ex2 = ex.clone()
- self.ex1.rotate_euler(beta=np.pi, alpha=0, gamma=0)
- self.ex2.rotate_euler(beta=np.pi, alpha=0, gamma=0)
- self.log_y = log_y
- self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
- class JanusPeakPPinv(peak_heigth.Peak):
- def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
- self.emanuele_data_column = 4
- self.y_label = r'$V_\mathrm{PP, 2}$'
- self.ex1 = ex.clone()
- self.ex2 = ex.clone().inverse_sign(exclude_00=True)
- self.ex1.rotate_euler(beta=np.pi, alpha=0, gamma=0)
- self.ex2.rotate_euler(beta=np.pi, alpha=0, gamma=0)
- self.log_y = log_y
- self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
- class JanusPeakEP(peak_heigth.Peak):
- def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
- self.emanuele_data_column = 4
- self.y_label = r'$V_{EP, 1}$'
- self.ex1 = ex.clone()
- self.ex2 = ex.clone()
- self.ex1.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
- self.ex2.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
- self.log_y = log_y
- self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
- class JanusPeakEPinv(peak_heigth.Peak):
- def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
- self.emanuele_data_column = 4
- self.y_label = r'$V_{EP, 2}$'
- self.ex1 = ex.clone()
- self.ex2 = ex.clone().inverse_sign(exclude_00=True)
- self.ex1.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
- self.ex2.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
- self.log_y = log_y
- self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
- def get_charge_energy_dicts(peak: peak_heigth.Peak, params: ModelParams, emanuele_data: Array, sigma0: Array, abar_cs: list, sigma_tilde=0.001):
- abar_ic, inverse, counts = np.unique(emanuele_data[:, 1], return_counts=True, return_inverse=True)
- # abar_ic = [0.1, 0.2, 0.3]
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2),
- peak.kappaR_axis_in_expansion)
- energy = energy_fn(peak.ex1, peak.ex2, params)
- data_dict_ic = {}
- data_dict_cs = {}
- k = 0
- for i in range(len(abar_ic)):
- ab = np.around(abar_ic[i], 5)
- if ab in np.around(abar_cs, 5):
- idx, = np.nonzero(inverse == i)
- charge = emanuele_data[idx, 0]
- en = emanuele_data[idx, peak.emanuele_data_column]
- sort = np.argsort(charge)
- if peak.log_y:
- data_dict_ic[ab] = np.stack((charge[sort], np.abs(en)[sort])).T
- data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, np.abs(energy[k]))).T
- else:
- data_dict_ic[ab] = np.stack((charge[sort], en[sort])).T
- data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, energy[k])).T
- k += 1
- return data_dict_ic, data_dict_cs
- def IC_peak_energy_charge_combined_plot(a_bar: list,
- R: float = 150,
- save_as: Path = None,
- log_y: bool = False):
- # em_data_path = (ICI_DATA_PATH.joinpath("FIG_11"))
- em_data_path = (ICI_DATA_PATH.joinpath("FIG_5_JANUS")).joinpath("FIG_5_JANUS_NEW_CHARGE")
- em_data = np.load(em_data_path.joinpath("pair_energy_PP_janus.npz"))
- data = em_data['changezc']
- params = ModelParams(R=R, kappaR=3)
- sigma0 = np.linspace(-0.00099, 0.00099, 300)
- sigma_tilde = 0.00099
- ex = charge_distributions.create_mapped_dipolar_expansion(np.sort(np.array(a_bar)), # sorting necessary as it is also in energy_dicts()
- kappaR=3, sigma0=sigma0, l_max=20, sigma_tilde=sigma_tilde)
- peak_pp = JanusPeakPP(ex, log_y)
- peak_pp_inv = JanusPeakPPinv(ex, log_y)
- peaks = [peak_pp, peak_pp_inv]
- # peak_ep = JanusPeakEP(ex, log_y)
- # peak_ep_inv = JanusPeakEPinv(ex, log_y)
- # peaks = [peak_ep, peak_ep_inv]
- data_ic = []
- data_cs = []
- for peak in peaks:
- dict_ic, dict_cs = get_charge_energy_dicts(peak, params, data, sigma0, a_bar, sigma_tilde)
- data_ic.append(dict_ic)
- data_cs.append(dict_cs)
- # fig, axs = plt.subplots(3, 1, figsize=(3, 7.8))
- fig = plt.figure(figsize=(4, 1.7))
- gs = gridspec.GridSpec(1, 2, figure=fig)
- gs.update(left=0.125, right=0.975, top=0.99, bottom=0.21, wspace=0.35)
- axs = [fig.add_subplot(gs[0, 0]), fig.add_subplot(gs[0, 1])]
- for ax, data_dict_ic, data_dict_cs, peak in zip(axs, data_ic, data_cs, peaks):
- colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
- for ab in a_bar:
- key = np.around(ab, 5)
- current_color = next(colors)
- ax.plot(data_dict_ic[key][:, 0], data_dict_ic[key][:, 1], label=rf'$\bar a = {key:.1f}$', c=current_color, linewidth=1.5)
- ax.plot(data_dict_cs[key][:, 0], data_dict_cs[key][:, 1], ls='--', c=current_color, linewidth=1.5,
- # label=rf'$\bar a = {key:.1f}$'
- )
- ax.legend(fontsize=9, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
- bbox_to_anchor=(0.75, 1.03),
- )
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=11)
- # if ax == axs[-1]:
- ax.set_xlabel(r'$\eta$', fontsize=11)
- ax.set_ylabel(peak.y_label, fontsize=11)
- if peak.log_y:
- ax.set_yscale('log')
- # ax.set_xscale('log')
- ax.yaxis.set_label_coords(-0.18, 0.5)
- ax.xaxis.set_label_coords(0.5, -0.12)
- axs[0].set_ylim(-23, 23)
- # plt.subplots_adjust(left=0.3)
- # plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=300)
- plt.show()
- def main():
- a_bar = [0.2, 0.5, 0.8]
- # a_bar = [0.1, 0.2, 0.3]
- IC_peak_energy_charge_combined_plot(a_bar,
- save_as=FIGURES_PATH.joinpath('final_figures').joinpath('janus_peak_combined_charge.png')
- )
- if __name__ == '__main__':
- main()
|