peak_heigth_janus.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173
  1. from matplotlib import gridspec
  2. from charged_shells import expansion, interactions, mapping, functions, charge_distributions
  3. from charged_shells.parameters import ModelParams
  4. import numpy as np
  5. from typing import Literal
  6. from functools import partial
  7. from config import *
  8. from plot_settings import *
  9. import peak_heigth
  10. Array = np.ndarray
  11. Expansion = expansion.Expansion
  12. class JanusPeakPP(peak_heigth.Peak):
  13. def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
  14. self.emanuele_data_column = 3
  15. self.y_label = r'$V_\mathrm{PP, 1}$'
  16. self.ex1 = ex.clone()
  17. self.ex2 = ex.clone()
  18. self.ex1.rotate_euler(beta=np.pi, alpha=0, gamma=0)
  19. self.ex2.rotate_euler(beta=np.pi, alpha=0, gamma=0)
  20. self.log_y = log_y
  21. self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
  22. class JanusPeakPPinv(peak_heigth.Peak):
  23. def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
  24. self.emanuele_data_column = 4
  25. self.y_label = r'$V_\mathrm{PP, 2}$'
  26. self.ex1 = ex.clone()
  27. self.ex2 = ex.clone().inverse_sign(exclude_00=True)
  28. self.ex1.rotate_euler(beta=np.pi, alpha=0, gamma=0)
  29. self.ex2.rotate_euler(beta=np.pi, alpha=0, gamma=0)
  30. self.log_y = log_y
  31. self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
  32. class JanusPeakEP(peak_heigth.Peak):
  33. def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
  34. self.emanuele_data_column = 4
  35. self.y_label = r'$V_{EP, 1}$'
  36. self.ex1 = ex.clone()
  37. self.ex2 = ex.clone()
  38. self.ex1.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
  39. self.ex2.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
  40. self.log_y = log_y
  41. self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
  42. class JanusPeakEPinv(peak_heigth.Peak):
  43. def __init__(self, ex: Expansion, log_y: bool = False, kappaR_axis_in_expansion: int = None):
  44. self.emanuele_data_column = 4
  45. self.y_label = r'$V_{EP, 2}$'
  46. self.ex1 = ex.clone()
  47. self.ex2 = ex.clone().inverse_sign(exclude_00=True)
  48. self.ex1.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
  49. self.ex2.rotate_euler(beta=np.pi/2, alpha=0, gamma=0)
  50. self.log_y = log_y
  51. self.kappaR_axis_in_expansion = kappaR_axis_in_expansion
  52. def get_charge_energy_dicts(peak: peak_heigth.Peak, params: ModelParams, emanuele_data: Array, sigma0: Array, abar_cs: list, sigma_tilde=0.001):
  53. abar_ic, inverse, counts = np.unique(emanuele_data[:, 1], return_counts=True, return_inverse=True)
  54. # abar_ic = [0.1, 0.2, 0.3]
  55. energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2),
  56. peak.kappaR_axis_in_expansion)
  57. energy = energy_fn(peak.ex1, peak.ex2, params)
  58. data_dict_ic = {}
  59. data_dict_cs = {}
  60. k = 0
  61. for i in range(len(abar_ic)):
  62. ab = np.around(abar_ic[i], 5)
  63. if ab in np.around(abar_cs, 5):
  64. idx, = np.nonzero(inverse == i)
  65. charge = emanuele_data[idx, 0]
  66. en = emanuele_data[idx, peak.emanuele_data_column]
  67. sort = np.argsort(charge)
  68. if peak.log_y:
  69. data_dict_ic[ab] = np.stack((charge[sort], np.abs(en)[sort])).T
  70. data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, np.abs(energy[k]))).T
  71. else:
  72. data_dict_ic[ab] = np.stack((charge[sort], en[sort])).T
  73. data_dict_cs[ab] = np.stack((sigma0 / sigma_tilde, energy[k])).T
  74. k += 1
  75. return data_dict_ic, data_dict_cs
  76. def IC_peak_energy_charge_combined_plot(a_bar: list,
  77. R: float = 150,
  78. save_as: Path = None,
  79. log_y: bool = False):
  80. # em_data_path = (ICI_DATA_PATH.joinpath("FIG_11"))
  81. em_data_path = (ICI_DATA_PATH.joinpath("FIG_5_JANUS")).joinpath("FIG_5_JANUS_NEW_CHARGE")
  82. em_data = np.load(em_data_path.joinpath("pair_energy_PP_janus.npz"))
  83. data = em_data['changezc']
  84. params = ModelParams(R=R, kappaR=3)
  85. sigma0 = np.linspace(-0.00099, 0.00099, 300)
  86. sigma_tilde = 0.00099
  87. ex = charge_distributions.create_mapped_dipolar_expansion(np.sort(np.array(a_bar)), # sorting necessary as it is also in energy_dicts()
  88. kappaR=3, sigma0=sigma0, l_max=20, sigma_tilde=sigma_tilde)
  89. peak_pp = JanusPeakPP(ex, log_y)
  90. peak_pp_inv = JanusPeakPPinv(ex, log_y)
  91. peaks = [peak_pp, peak_pp_inv]
  92. # peak_ep = JanusPeakEP(ex, log_y)
  93. # peak_ep_inv = JanusPeakEPinv(ex, log_y)
  94. # peaks = [peak_ep, peak_ep_inv]
  95. data_ic = []
  96. data_cs = []
  97. for peak in peaks:
  98. dict_ic, dict_cs = get_charge_energy_dicts(peak, params, data, sigma0, a_bar, sigma_tilde)
  99. data_ic.append(dict_ic)
  100. data_cs.append(dict_cs)
  101. # fig, axs = plt.subplots(3, 1, figsize=(3, 7.8))
  102. fig = plt.figure(figsize=(4, 1.7))
  103. gs = gridspec.GridSpec(1, 2, figure=fig)
  104. gs.update(left=0.125, right=0.975, top=0.99, bottom=0.21, wspace=0.35)
  105. axs = [fig.add_subplot(gs[0, 0]), fig.add_subplot(gs[0, 1])]
  106. for ax, data_dict_ic, data_dict_cs, peak in zip(axs, data_ic, data_cs, peaks):
  107. colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
  108. for ab in a_bar:
  109. key = np.around(ab, 5)
  110. current_color = next(colors)
  111. ax.plot(data_dict_ic[key][:, 0], data_dict_ic[key][:, 1], label=rf'$\bar a = {key:.1f}$', c=current_color, linewidth=1.5)
  112. ax.plot(data_dict_cs[key][:, 0], data_dict_cs[key][:, 1], ls='--', c=current_color, linewidth=1.5,
  113. # label=rf'$\bar a = {key:.1f}$'
  114. )
  115. ax.legend(fontsize=9, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
  116. bbox_to_anchor=(0.75, 1.03),
  117. )
  118. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=11)
  119. # if ax == axs[-1]:
  120. ax.set_xlabel(r'$\eta$', fontsize=11)
  121. ax.set_ylabel(peak.y_label, fontsize=11)
  122. if peak.log_y:
  123. ax.set_yscale('log')
  124. # ax.set_xscale('log')
  125. ax.yaxis.set_label_coords(-0.18, 0.5)
  126. ax.xaxis.set_label_coords(0.5, -0.12)
  127. axs[0].set_ylim(-23, 23)
  128. # plt.subplots_adjust(left=0.3)
  129. # plt.tight_layout()
  130. if save_as is not None:
  131. plt.savefig(save_as, dpi=300)
  132. plt.show()
  133. def main():
  134. a_bar = [0.2, 0.5, 0.8]
  135. # a_bar = [0.1, 0.2, 0.3]
  136. IC_peak_energy_charge_combined_plot(a_bar,
  137. save_as=FIGURES_PATH.joinpath('final_figures').joinpath('janus_peak_combined_charge.png')
  138. )
  139. if __name__ == '__main__':
  140. main()