dip_path_plot.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. import numpy as np
  2. from matplotlib import gridspec
  3. from charged_shells.rotational_path import PairRotationalPath, PathEnergyPlot
  4. from charged_shells import interactions, charge_distributions
  5. from charged_shells.parameters import ModelParams
  6. from config import *
  7. from plot_settings import *
  8. Array = np.ndarray
  9. zero_to_pi_half = np.linspace(0, np.pi/2, 100, endpoint=True)
  10. pi_half_to_pi = np.linspace(np.pi/2, np.pi, 100, endpoint=True)
  11. pi_to_three_halves_pi = np.linspace(np.pi, 3 * np.pi / 2, 100, endpoint=True)
  12. DipolePath = PairRotationalPath()
  13. DipolePath.set_default_x_axis(zero_to_pi_half)
  14. DipolePath.add_euler(beta2=pi_half_to_pi[::-1])
  15. DipolePath.add_euler(beta2=zero_to_pi_half[::-1])
  16. DipolePath.add_euler(beta2=zero_to_pi_half, beta1=zero_to_pi_half)
  17. DipolePath.add_euler(beta2=np.pi/2, beta1=np.pi/2, alpha2=zero_to_pi_half)
  18. DipolePath.add_euler(beta2=np.pi/2, alpha2=np.pi/2, beta1=pi_half_to_pi)
  19. DipolePath.add_euler(beta2=np.pi/2, beta1=pi_half_to_pi[::-1], alpha1=np.pi)
  20. DipolePath.add_euler(beta2=zero_to_pi_half[::-1], beta1=pi_half_to_pi, alpha1=np.pi)
  21. DipolePath.add_euler(beta2=zero_to_pi_half, beta1=pi_half_to_pi[::-1], alpha1=np.pi)
  22. DipolePath.add_euler(beta2=pi_half_to_pi, beta1=zero_to_pi_half[::-1], alpha1=np.pi)
  23. DipolePath2 = PairRotationalPath()
  24. DipolePath2.set_default_x_axis(zero_to_pi_half)
  25. DipolePath2.add_euler(beta2=pi_half_to_pi[::-1])
  26. DipolePath2.add_euler(beta2=zero_to_pi_half[::-1])
  27. DipolePath2.add_euler(beta2=zero_to_pi_half, beta1=zero_to_pi_half)
  28. DipolePath2.add_euler(beta2=np.pi/2, beta1=np.pi/2, alpha2=zero_to_pi_half)
  29. DipolePath2.add_euler(beta2=np.pi/2, alpha2=np.pi/2, beta1=pi_half_to_pi)
  30. DipolePath2.add_euler(beta2=zero_to_pi_half[::-1], beta1=pi_half_to_pi[::-1])
  31. DipolePath2.add_euler(beta2=zero_to_pi_half[::-1], beta1=np.pi)
  32. DipolePath2.add_euler(beta2=zero_to_pi_half, beta1=pi_half_to_pi[::-1], alpha1=np.pi)
  33. DipolePath2.add_euler(beta2=pi_half_to_pi, beta1=zero_to_pi_half[::-1], alpha1=np.pi)
  34. DipolePath3 = PairRotationalPath()
  35. DipolePath3.set_default_x_axis(zero_to_pi_half)
  36. DipolePath3.add_euler(beta2=np.pi/2, beta1=zero_to_pi_half, start_name="EP", end_name="EE")
  37. DipolePath3.add_euler(beta2=pi_half_to_pi, beta1=pi_half_to_pi, end_name="PP")
  38. DipolePath3.add_euler(beta2=pi_half_to_pi[::-1], beta1=np.pi, end_name="EP")
  39. DipolePath3.add_euler(beta2=pi_half_to_pi, beta1=pi_to_three_halves_pi, end_name="EP")
  40. DipolePath3.add_euler(beta1=3 * np.pi/2, beta2=pi_half_to_pi[::-1], alpha2=np.pi/2, end_name="tEE")
  41. DipolePath3.add_euler(beta1=3 * np.pi/2, beta2=np.pi/2, alpha1=zero_to_pi_half[::-1], end_name="EE")
  42. DipolePath3.add_euler(beta1=3 * np.pi/2, beta2=pi_half_to_pi, end_name="EP")
  43. def sections_plot(kappaR: float = 3, abar: float = 0.5, sigma_tilde=0.001, save_as=None):
  44. params = ModelParams(R=150, kappaR=kappaR)
  45. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30)
  46. ex2 = ex1.clone()
  47. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  48. path_plot.plot_sections(save_as=save_as)
  49. def kappaR_dependence(kappaR: Array, abar: float, sigma_tilde=0.001, save_as=None):
  50. params = ModelParams(R=150, kappaR=kappaR)
  51. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30)
  52. ex2 = ex1.clone()
  53. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=0)
  54. path_plot.plot(labels=[rf'$\kappa R$={kR}' for kR in kappaR],
  55. # norm_euler_angles={'beta2': np.pi},
  56. save_as=save_as)
  57. def abar_dependence(abar: Array, kappaR: float, sigma_tilde=0.001, save_as=None):
  58. params = ModelParams(R=150, kappaR=kappaR)
  59. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30)
  60. ex2 = ex1.clone()
  61. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  62. path_plot.plot(labels=[rf'$\bar a$={a}' for a in abar],
  63. # norm_euler_angles={'beta2': np.pi},
  64. save_as=save_as)
  65. def sigma0_dependence(sigma0: Array, kappaR: float, abar: float, sigma_tilde=0.001, save_as=None):
  66. params = ModelParams(R=150, kappaR=kappaR)
  67. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30, sigma0=sigma0)
  68. ex2 = ex1.clone()
  69. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  70. path_plot.plot(labels=[rf'$\eta={s0 / sigma_tilde}$' for s0 in sigma0],
  71. # norm_euler_angles={'beta2': np.pi},
  72. save_as=save_as)
  73. def model_comparison(save_as=None, save_data=False):
  74. kappaR = 3
  75. params = ModelParams(R=150, kappaR=kappaR)
  76. a_bar = 0.5
  77. sigma_tilde = 0.001
  78. ex1 = charge_distributions.create_mapped_dipolar_expansion(a_bar, params.kappaR, sigma_tilde, l_max=30)
  79. ex2 = ex1.clone()
  80. ex3 = ex1.clone().inverse_sign()
  81. # matching other models to the mapped CSp model based on equal patch size in potential
  82. # ex_gauss = quadrupole_model_mappings.ic_to_gauss(sigma_tilde, a_bar, params, l_max=30, sigma0=0)
  83. # ex_gauss2 = ex_gauss.clone()
  84. # ex_cap = quadrupole_model_mappings.ic_to_cap(sigma_tilde, a_bar, params, l_max=30, sigma0=0)
  85. # ex_cap2 = ex_cap.clone()
  86. # path plots for all models
  87. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params)
  88. energy = path_plot.evaluate_path()
  89. x_axis = path_plot.rot_path.stack_x_axes()
  90. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params)
  91. energy_inv = path_plot_inv.evaluate_path()
  92. # path_plot_gauss = PathEnergyPlot(ex_gauss, ex_gauss2, DipolePath3, dist=2., params=params)
  93. # energy_gauss = path_plot_gauss.evaluate_path()
  94. #
  95. # path_plot_cap = PathEnergyPlot(ex_cap, ex_cap2, DipolePath3, dist=2., params=params)
  96. # energy_cap = path_plot_cap.evaluate_path()
  97. # peak_energy_sanity_check
  98. # ex1new = expansion.MappedExpansionQuad(abar, params.kappaR, sigma_tilde, l_max=30)
  99. # ex2new = ex1new.clone()
  100. # pp_energy = interactions.charged_shell_energy(ex1new, ex2new, params)
  101. # print(f'PP energy: {pp_energy}')
  102. # ICi data
  103. em_data = np.load(ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_A").joinpath("pathway.npz"))['arr_0']
  104. # em_data = np.load(ICI_DATA_PATH.joinpath("FIG_7").joinpath("pathway.npz"))['arr_0']
  105. # em_data_path = (ICI_DATA_PATH.joinpath("FIG_8").joinpath("FIXEDCHARGE")
  106. # .joinpath("FIX_A").joinpath("ECC_0.25"))
  107. # em_data = np.load(em_data_path.joinpath(f"EMME_{kappaR}.").joinpath("pathway.npz"))['arr_0']
  108. em_data, em_data_inv = em_data[:int(len(em_data) / 2)], em_data[int(len(em_data) / 2):]
  109. # if save_data:
  110. # np.savez(Path(config_data["figure_data"]).joinpath(f"fig_5_janus_kR{kappaR}.npz"),
  111. # ICi=em_data,
  112. # CSp=np.stack((x_axis, np.squeeze(energy))).T,
  113. # CSp_gauss=np.stack((x_axis, np.squeeze(energy_gauss))).T,
  114. # CSp_cap=np.stack((x_axis, np.squeeze(energy_cap))).T)
  115. fig, ax = plt.subplots(figsize=0.5 * np.array([8.25, 4.125]))
  116. ax.plot(em_data[:, 0], em_data[:, 1], label='ICi', c='tab:blue')
  117. ax.plot(em_data_inv[:, 0], em_data_inv[:, 1], ls='--', c='tab:blue')
  118. ax.plot(x_axis, np.squeeze(energy), label='CSp', c='tab:orange')
  119. ax.plot(x_axis, np.squeeze(energy_inv), ls='--', c='tab:orange')
  120. # ax.plot(x_axis, np.squeeze(energy_gauss), label='CSp - Gauss')
  121. # ax.plot(x_axis, np.squeeze(energy_cap), label='CSp - cap')
  122. # ax.plot(x_axis, em_data[:, 1] / np.squeeze(energy), label='CSp')
  123. path_plot.plot_style(fig, ax)
  124. if save_as is not None:
  125. plt.savefig(save_as, dpi=300)
  126. plt.show()
  127. def combined_kappaR_dependence(kappaR: list[int], abar: float, sigma_tilde=0.001, save_as=None):
  128. em_data_path = (ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_C")
  129. .joinpath("FIX_A").joinpath(f"ECC_{np.round(abar/2, 4)}"))
  130. ic_data = []
  131. ic_data_inv = []
  132. for kR in kappaR:
  133. em_data = np.load(em_data_path.joinpath(f"EMME_{kR}.").joinpath("pathway.npz"))['arr_0']
  134. em_data, em_data_inv = em_data[:int(len(em_data) / 2)], em_data[int(len(em_data) / 2):]
  135. ic_data.append(em_data)
  136. ic_data_inv.append(em_data_inv)
  137. params = ModelParams(R=150, kappaR=np.asarray(kappaR))
  138. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30)
  139. ex2 = ex1.clone()
  140. ex3 = ex1.clone().inverse_sign()
  141. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=0)
  142. energy = path_plot.evaluate_path()
  143. x_axis = path_plot.rot_path.stack_x_axes()
  144. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=0)
  145. energy_inv = path_plot_inv.evaluate_path()
  146. labels = [rf'$\kappa R = {kR}$' for kR in [1, 3, 10]]
  147. fig, ax = plt.subplots()
  148. for d, d_inv, en, en_inv, label, c in zip(ic_data, ic_data_inv, energy.T, energy_inv.T, labels, COLORS):
  149. ax.plot(d[:, 0], d[:, 1], label=label, c=c)
  150. ax.plot(d_inv[:, 0], d_inv[:, 1], c=c)
  151. ax.plot(x_axis, en, ls='--', c=c)
  152. ax.plot(x_axis, en_inv, ls='--', c=c)
  153. DipolePath3.plot_style(fig, ax)
  154. if save_as is not None:
  155. plt.savefig(save_as, dpi=300)
  156. plt.show()
  157. def combined_abar_dependence(kappaR: int, abar: list[float], sigma_tilde=0.001, save_as=None):
  158. em_data_path = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_B").joinpath("FIX_M")
  159. ic_data = []
  160. ic_data_inv = []
  161. for ab in abar:
  162. em_data = np.load(em_data_path.joinpath(f"ECC_{np.round(ab/2, 4)}").joinpath(f"EMME_{kappaR}.").joinpath("pathway.npz"))['arr_0']
  163. em_data, em_data_inv = em_data[:int(len(em_data) / 2)], em_data[int(len(em_data) / 2):]
  164. ic_data.append(em_data)
  165. ic_data_inv.append(em_data_inv)
  166. params = ModelParams(R=150, kappaR=kappaR)
  167. ex1 = charge_distributions.create_mapped_dipolar_expansion(np.asarray(abar), params.kappaR, sigma_tilde, l_max=30)
  168. ex2 = ex1.clone()
  169. ex3 = ex1.clone().inverse_sign()
  170. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  171. energy = path_plot.evaluate_path()
  172. x_axis = path_plot.rot_path.stack_x_axes()
  173. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  174. energy_inv = path_plot_inv.evaluate_path()
  175. labels = [rf'$\bar a={a}$' for a in [0.3, 0.4, 0.5]]
  176. fig, ax = plt.subplots()
  177. for d, d_inv, en, en_inv, label, c in zip(ic_data, ic_data_inv, energy.T, energy_inv.T, labels, COLORS):
  178. ax.plot(d[:, 0], d[:, 1], label=label, c=c)
  179. ax.plot(d_inv[:, 0], d_inv[:, 1], c=c)
  180. ax.plot(x_axis, en, ls='--', c=c)
  181. ax.plot(x_axis, en_inv, ls='--', c=c)
  182. DipolePath3.plot_style(fig, ax)
  183. if save_as is not None:
  184. plt.savefig(save_as, dpi=300)
  185. plt.show()
  186. def combined_sigma0_dependence(kappaR=3., abar=0.5, sigma0=(-0.0002, 0.00, 0.0002), sigma_tilde=0.001, save_as=None):
  187. em_data_path = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_D").joinpath("CHANGE_ZC")
  188. undercharged = np.load(em_data_path.joinpath("ZC_-56").joinpath("pathway.npz"))['arr_0']
  189. overcharged = np.load(em_data_path.joinpath("ZC_56").joinpath("pathway.npz"))['arr_0']
  190. neutral_path = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_B").joinpath("FIX_M")
  191. neutral = np.load(neutral_path.joinpath(f"ECC_{np.round(abar/2, 4)}").joinpath(f"EMME_{int(kappaR)}.").joinpath("pathway.npz"))['arr_0']
  192. undercharged, undercharged_inv = undercharged[:int(len(undercharged) / 2)], undercharged[int(len(undercharged) / 2):]
  193. overcharged, overcharged_inv = overcharged[:int(len(overcharged) / 2)], overcharged[int(len(overcharged) / 2):]
  194. neutral, neutral_inv = neutral[:int(len(neutral) / 2)], neutral[int(len(neutral) / 2):]
  195. ic_data = [undercharged, neutral, overcharged]
  196. ic_data_inv = [undercharged_inv, neutral_inv, overcharged_inv]
  197. params = ModelParams(R=150, kappaR=kappaR)
  198. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30, sigma0=np.asarray(sigma0))
  199. ex2 = ex1.clone()
  200. ex3 = ex1.clone().inverse_sign(exclude_00=True)
  201. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  202. energy = path_plot.evaluate_path()
  203. x_axis = path_plot.rot_path.stack_x_axes()
  204. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  205. energy_inv = path_plot_inv.evaluate_path()
  206. labels = [rf'$\eta={s0/sigma_tilde}$' for s0 in sigma0]
  207. fig, ax = plt.subplots()
  208. for d, d_inv, en, en_inv, label, c in zip(ic_data, ic_data_inv, energy.T, energy_inv.T, labels, COLORS):
  209. ax.plot(d[:, 0], d[:, 1], label=label, c=c)
  210. ax.plot(d_inv[:, 0], d_inv[:, 1], c=c)
  211. ax.plot(x_axis, en, ls='--', c=c)
  212. ax.plot(x_axis, en_inv, ls='--', c=c)
  213. DipolePath3.plot_style(fig, ax)
  214. if save_as is not None:
  215. plt.savefig(save_as, dpi=300)
  216. plt.show()
  217. def combined_all(save_as=None):
  218. sigma_tilde = 0.00099
  219. kappaR_list = [1, 3, 10]
  220. abar_list = [0.5, 0.4, 0.3]
  221. sigma0_list = [-0.000198, 0.00, 0.000198]
  222. kappaR = 3
  223. abar = 0.5
  224. em_data_kappaR = (ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_C")
  225. .joinpath("FIX_A").joinpath(f"ECC_{np.round(abar / 2, 4)}"))
  226. ic_data_kappaR = []
  227. ic_data_kappaR_inv = []
  228. for kR in kappaR_list:
  229. em_data = np.load(em_data_kappaR.joinpath(f"EMME_{kR}.").joinpath("pathway.npz"))['arr_0']
  230. em_data, em_data_inv = em_data[:int(len(em_data) / 2)], em_data[int(len(em_data) / 2):]
  231. ic_data_kappaR.append(em_data)
  232. ic_data_kappaR_inv.append(em_data_inv)
  233. params = ModelParams(R=150, kappaR=np.asarray(kappaR_list))
  234. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30)
  235. ex2 = ex1.clone()
  236. ex3 = ex1.clone().inverse_sign(exclude_00=True)
  237. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=0)
  238. energy_kappaR = path_plot.evaluate_path()
  239. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=0)
  240. energy_kappaR_inv = path_plot_inv.evaluate_path()
  241. x_axis_kappaR = path_plot.rot_path.stack_x_axes()
  242. labels_kappaR = [rf'$\kappa R={kR}$' for kR in [1, 3, 10]]
  243. em_data_abar = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_B").joinpath("FIX_M")
  244. ic_data_abar = []
  245. ic_data_abar_inv = []
  246. for ab in abar_list:
  247. em_data = np.load(
  248. em_data_abar.joinpath(f"ECC_{np.round(ab / 2, 4)}").joinpath(f"EMME_{kappaR}.").joinpath("pathway.npz"))[
  249. 'arr_0']
  250. em_data, em_data_inv = em_data[:int(len(em_data) / 2)], em_data[int(len(em_data) / 2):]
  251. ic_data_abar.append(em_data)
  252. ic_data_abar_inv.append(em_data_inv)
  253. params = ModelParams(R=150, kappaR=kappaR)
  254. ex1 = charge_distributions.create_mapped_dipolar_expansion(np.asarray(abar_list), params.kappaR, sigma_tilde, l_max=30)
  255. ex2 = ex1.clone()
  256. ex3 = ex1.clone().inverse_sign(exclude_00=True)
  257. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  258. energy_abar = path_plot.evaluate_path()
  259. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  260. energy_abar_inv = path_plot_inv.evaluate_path()
  261. x_axis_abar = path_plot.rot_path.stack_x_axes()
  262. labels_abar = [rf'$\bar a={a}$' for a in abar_list]
  263. em_data_charge = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_D").joinpath("CHANGE_ZC")
  264. undercharged = np.load(em_data_charge.joinpath("ZC_-56").joinpath("pathway.npz"))['arr_0']
  265. overcharged = np.load(em_data_charge.joinpath("ZC_56").joinpath("pathway.npz"))['arr_0']
  266. neutral_path = ICI_DATA_PATH.joinpath("FIG_5_JANUS").joinpath("FIG_5_JANUS_B").joinpath("FIX_M")
  267. neutral = np.load(
  268. neutral_path.joinpath(f"ECC_{np.round(abar / 2, 4)}").joinpath(f"EMME_{int(kappaR)}.").joinpath("pathway.npz"))[
  269. 'arr_0']
  270. undercharged, undercharged_inv = undercharged[:int(len(undercharged) / 2)], undercharged[
  271. int(len(undercharged) / 2):]
  272. overcharged, overcharged_inv = overcharged[:int(len(overcharged) / 2)], overcharged[int(len(overcharged) / 2):]
  273. neutral, neutral_inv = neutral[:int(len(neutral) / 2)], neutral[int(len(neutral) / 2):]
  274. ic_data_sigma0 = [undercharged, neutral, overcharged]
  275. ic_data_sigma0_inv = [undercharged_inv, neutral_inv, overcharged_inv]
  276. params = ModelParams(R=150, kappaR=kappaR)
  277. ex1 = charge_distributions.create_mapped_dipolar_expansion(abar, params.kappaR, sigma_tilde, l_max=30, sigma0=np.asarray(sigma0_list))
  278. ex2 = ex1.clone()
  279. ex3 = ex1.clone().inverse_sign(exclude_00=True)
  280. path_plot = PathEnergyPlot(ex1, ex2, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  281. energy_sigma0 = path_plot.evaluate_path()
  282. path_plot_inv = PathEnergyPlot(ex1, ex3, DipolePath3, dist=2., params=params, match_expansion_axis_to_params=None)
  283. energy_sigma0_inv = path_plot_inv.evaluate_path()
  284. x_axis_sigma0 = path_plot.rot_path.stack_x_axes()
  285. labels_sigma0 = [rf'$\eta={s0/sigma_tilde:.1f}$' for s0 in sigma0_list]
  286. # fig, axs = plt.subplots(3, 1, figsize=(6, 7.8))
  287. fig = plt.figure(figsize=(4, 3.6))
  288. gs = gridspec.GridSpec(2, 1, figure=fig)
  289. # gs.update(left=0.12, right=0.975, top=0.96, bottom=0.04, hspace=0.3)
  290. gs.update(left=0.12, right=0.975, top=0.94, bottom=0.06, hspace=0.3)
  291. # axs = [fig.add_subplot(gs[0, 0]), fig.add_subplot(gs[1, 0]), fig.add_subplot(gs[2, 0])]
  292. axs = [fig.add_subplot(gs[0, 0]), fig.add_subplot(gs[1, 0])]
  293. for d, d_inv, en, en_inv, label, c in zip(ic_data_kappaR, ic_data_kappaR_inv, energy_kappaR.T, energy_kappaR_inv.T, labels_kappaR, COLOR_LIST):
  294. axs[0].set_title('Screening', fontsize=11, y=0.98)
  295. axs[0].plot(d[:, 0], d[:, 1], label=label, c=c)
  296. axs[0].plot(x_axis_kappaR, en, ls='--', c=c)
  297. axs[0].plot(d_inv[:, 0], d_inv[:, 1], c=c)
  298. axs[0].plot(x_axis_kappaR, en_inv, ls='--', c=c)
  299. DipolePath3.plot_style(fig, axs[0], size=None)
  300. axs[0].get_legend().set_bbox_to_anchor((0.65, 1.03))
  301. # for d, d_inv, en, en_inv, label, c in zip(ic_data_abar, ic_data_abar_inv, energy_abar.T, energy_abar_inv.T, labels_abar, COLOR_LIST):
  302. # axs[1].set_title('Eccentricity', fontsize=11, y=0.98)
  303. # axs[1].plot(d[:, 0], d[:, 1], label=label, c=c)
  304. # axs[1].plot(x_axis_abar, en, ls='--', c=c)
  305. # axs[1].plot(d_inv[:, 0], d_inv[:, 1], c=c)
  306. # axs[1].plot(x_axis_abar, en_inv, ls='--', c=c)
  307. # DipolePath3.plot_style(fig, axs[1], size=None)
  308. # axs[1].get_legend().set_bbox_to_anchor((0.65, 1.02))
  309. for d, d_inv, en, en_inv, label, c in reversed(list(zip(ic_data_sigma0, ic_data_sigma0_inv, energy_sigma0.T,
  310. energy_sigma0_inv.T, labels_sigma0, COLOR_LIST[:3][::-1]))):
  311. axs[1].set_title('Net charge', fontsize=11, y=0.98)
  312. axs[1].plot(d[:, 0], d[:, 1], label=label, c=c)
  313. axs[1].plot(x_axis_sigma0, en, ls='--', c=c)
  314. axs[1].plot(d_inv[:, 0], d_inv[:, 1], c=c)
  315. axs[1].plot(x_axis_sigma0, en_inv, ls='--', c=c)
  316. DipolePath3.plot_style(fig, axs[1], size=None)
  317. axs[1].get_legend().set_bbox_to_anchor((0.65, 1.02))
  318. for ax in axs:
  319. ax.yaxis.set_label_coords(-0.08, 0.5)
  320. # axs[-1].set_xlabel('rotational path', fontsize=15)
  321. # plt.tight_layout()
  322. if save_as is not None:
  323. plt.savefig(save_as, dpi=300)
  324. plt.show()
  325. if __name__ == '__main__':
  326. # sections_plot(save_as=Path("/home/andraz/ChargedShells/Figures/dipole_test_path.png"))
  327. # kappaR_dependence(np.array([3, 5]), 0.5,
  328. # # save_as=Path("/home/andraz/ChargedShells/Figures/quadrupole_kappaR_dep.png")
  329. # )
  330. # abar_dependence(np.array([0.3, 0.4, 0.5]), 3,
  331. # save_as=Path("/home/andraz/ChargedShells/Figures/quadrupole_abar_dep.png")
  332. # )
  333. # sigma0_dependence(np.array([-0.0002, 0.00, 0.0002]), 3, 0.5,
  334. # save_as=Path("/home/andraz/ChargedShells/Figures/quadrupole_charge_dep_abar05_kappaR3.png")
  335. # )
  336. # model_comparison(
  337. # # save_as=FIGURES_PATH.joinpath("ICi_data").joinpath('IC_CS_janus_path.pdf')
  338. # )
  339. # combined_kappaR_dependence(kappaR=[1, 3, 10], abar=0.5,
  340. # # save_as=FIGURES_PATH.joinpath("final_figures").joinpath('janus_kappaR_dep.png')
  341. # )
  342. #
  343. # combined_abar_dependence(kappaR=3, abar=[0.3, 0.4, 0.5],
  344. # # save_as=FIGURES_PATH.joinpath("final_figures").joinpath('janus_abar_dep.png')
  345. # )
  346. #
  347. # combined_sigma0_dependence(
  348. # # save_as=FIGURES_PATH.joinpath("final_figures").joinpath('janus_charge_dep.png')
  349. # )
  350. #
  351. combined_all(
  352. # save_as=FIGURES_PATH.joinpath("final_figures").joinpath('janus_combined_dep.png')
  353. )