123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- import matplotlib.pyplot as plt
- import numpy as np
- from charged_shells import expansion, interactions, mapping, charge_distributions
- from charged_shells.parameters import ModelParams
- from functools import partial
- from matplotlib import cm
- from mpl_toolkits.axes_grid1 import make_axes_locatable
- from matplotlib.colors import TwoSlopeNorm
- from matplotlib.ticker import FuncFormatter
- from config import *
- Expansion = expansion.Expansion
- def energy_gap(ex1: Expansion, params: ModelParams, dist=2., match_expansion_axis_to_params=None):
- ex2 = ex1.clone()
- ex3 = ex1.clone()
- ex2.rotate_euler(alpha=0, beta=np.pi/2, gamma=0) # to get EP config between ex1 and ex2
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist),
- match_expansion_axis_to_params)
- energy_ep = energy_fn(ex1, ex2, params)
- energy_pp = energy_fn(ex1, ex3, params)
- return (energy_pp - energy_ep) / energy_pp
- def abar_kappaR_dependence(save_as=None):
- kappaR = np.linspace(0.01, 25, 25)
- a_bar = np.array([0.2, 0.4, 0.6, 0.8])
- params = ModelParams(R=150, kappaR=kappaR)
- ex = charge_distributions.create_mapped_quad_expansion(a_bar[:, None], kappaR[None, :], 0.001)
- # ex = expansion.MappedExpansionQuad(a_bar, kappaR, 0.001)
- gap = energy_gap(ex, params, match_expansion_axis_to_params=1)
- fig, ax = plt.subplots(figsize=plt.figaspect(0.5))
- for g, lbl in zip(gap, [rf'$\bar a={a}$' for a in a_bar]):
- ax.plot(kappaR, g, label=lbl)
- ax.legend(fontsize=17)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- ax.set_ylabel(r'$\frac{V_{pp}-V_{ep}}{V_{pp}}$', fontsize=20)
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def abar_kappaR_dependence2(save_as=None):
- kappaR = np.array([1, 3, 10, 30])
- a_bar = np.linspace(0.2, 0.8, 30)
- params = ModelParams(R=150, kappaR=kappaR)
- ex = charge_distributions.create_mapped_quad_expansion(a_bar[:, None], kappaR[None, :], 0.001)
- # ex = expansion.MappedExpansionQuad(a_bar, kappaR, 0.001)
- gap = energy_gap(ex, params, match_expansion_axis_to_params=1)
- fig, ax = plt.subplots(figsize=plt.figaspect(0.5))
- for g, lbl in zip(gap.T, [rf'$\kappa R={kR}$' for kR in kappaR]):
- ax.plot(a_bar, g, label=lbl)
- ax.legend(fontsize=17)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
- ax.set_xlabel(r'$\bar a$', fontsize=15)
- ax.set_ylabel(r'$\frac{V_{pp}-V_{ep}}{V_{pp}}$', fontsize=20)
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def charge_kappaR_dependence(a_bar, min_charge, max_charge, save_as=None, cmap=cm.jet):
- kappaR = np.linspace(0.01, 10, 50)
- sigma_tilde = 0.001
- params = ModelParams(R=150, kappaR=kappaR)
- charge = np.linspace(min_charge, max_charge, 100)
- ex = charge_distributions.create_mapped_quad_expansion(a_bar, kappaR, sigma_tilde, sigma0=charge)
- # ex = expansion.MappedExpansionQuad(a_bar, kappaR, 0.001)
- gap = energy_gap(ex, params, match_expansion_axis_to_params=0)
- colors = cmap(np.linspace(0, 1, len(charge)))
- sm = cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=np.min(charge) / sigma_tilde,
- vmax=np.max(charge) / sigma_tilde))
- sm.set_array([])
- fig, ax = plt.subplots(figsize=plt.figaspect(0.5))
- for g, c in zip(gap.T, colors):
- ax.plot(kappaR, g, c=c)
- # ax.legend(fontsize=17)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=20)
- ax.set_ylabel(r'$(V_{pp}-V_{ep})/V_{pp}$', fontsize=20)
- divider = make_axes_locatable(ax)
- cax = divider.append_axes('right', size='5%', pad=0.05)
- cax.tick_params(labelsize=15)
- cbar = fig.colorbar(sm, cax=cax, orientation='vertical')
- cbar.set_label(r'$\eta$', rotation=0, labelpad=15, fontsize=20)
- # plt.tight_layout()
- plt.subplots_adjust(left=0.1, right=0.9, top=0.95, bottom=0.12)
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def charge_kappaR_dependence_heatmap(a_bar, min_charge, max_charge, save_as=None, cmap=cm.jet):
- kappaR = np.linspace(0.01, 10, 50)
- params = ModelParams(R=150, kappaR=kappaR)
- charge = np.linspace(min_charge, max_charge, 100)
- ex = charge_distributions.create_mapped_quad_expansion(a_bar, kappaR, 0.001, sigma0=charge)
- # ex = expansion.MappedExpansionQuad(a_bar, kappaR, 0.001)
- gap = energy_gap(ex, params, match_expansion_axis_to_params=0)
- norm = TwoSlopeNorm(vmin=np.min(gap), vcenter=0, vmax=np.max(gap))
- sm = cm.ScalarMappable(cmap=cmap, norm=norm)
- sm.set_array([])
- def y_formatter(x, pos):
- return f"{charge[int(x)-1]:.2f}"
- def x_formatter(x, pos):
- return f"{kappaR[int(x)-1]:.2f}"
- fig, ax = plt.subplots(figsize=plt.figaspect(1))
- ax.imshow(gap.T, cmap=cmap, origin='lower',
- # extent=[kappaR.min(), kappaR.max(), charge.min(), charge.max()]
- )
- # ax.legend(fontsize=17)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=12)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- ax.set_ylabel(r'$\tilde \sigma_0$', fontsize=15)
- plt.gca().xaxis.set_major_formatter(FuncFormatter(x_formatter))
- plt.gca().yaxis.set_major_formatter(FuncFormatter(y_formatter))
- # ax.set_xticks(kappaR)
- # ax.set_yticks(charge)
- divider = make_axes_locatable(ax)
- cax = divider.append_axes('right', size='5%', pad=0.05)
- cbar = fig.colorbar(sm, cax=cax, orientation='vertical')
- cbar.set_label(r'$\frac{V_{pp}-V_{ep}}{V_{pp}}$', rotation=90, labelpad=20, fontsize=12)
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def IC_gap_plot(save_as=None):
- em_data_path = (ICI_DATA_PATH.joinpath("FIG_10"))
- em_data = np.load(em_data_path.joinpath("relative_gap.npz"))
- for k in list(em_data.keys()):
- data = em_data[k]
- print(k, data.shape)
- for i in range(3):
- print(np.unique(data[:, i]))
- print('\n')
- def IC_gap_kappaR(save_as=None):
- em_data_path = (ICI_DATA_PATH.joinpath("FIG_10"))
- em_data = np.load(em_data_path.joinpath("relative_gap.npz"))
- data = em_data['fixA']
- print(data)
- sort = np.argsort(data[:, 2])
- xdata = data[:, 2][sort]
- ydata = data[:, 3][sort]
- plt.plot(xdata, ydata)
- plt.xlabel('kappaR')
- plt.ylabel('gap')
- plt.show()
- def IC_gap_abar(save_as=None):
- em_data_path = (ICI_DATA_PATH.joinpath("FIG_10"))
- em_data = np.load(em_data_path.joinpath("relative_gap.npz"))
- data = em_data['fixM']
- print(data)
- sort = np.argsort(data[:, 1])
- xdata = data[:, 1][sort]
- ydata = data[:, 3][sort]
- plt.plot(xdata, ydata)
- plt.xlabel('abar')
- plt.ylabel('gap')
- plt.show()
- def IC_gap_charge_at_abar(a_bar, save_as=None, cmap=cm.coolwarm, which_change='changezp',
- eta_min: float = None, eta_max: float = None):
- em_data_path = (ICI_DATA_PATH.joinpath("FIG_10"))
- em_data = np.load(em_data_path.joinpath("relative_gap_ZC.npz"))
- data = em_data[which_change]
- sigma_tilde = 0.001
- relevant_indices = data[:, 1] == a_bar
- if not np.any(relevant_indices):
- raise ValueError(f'No results for given a_bar = {a_bar}. Possible values: {np.unique(data[:, 1])}')
- data = data[relevant_indices]
- charge, inverse, counts = np.unique(data[:, 0], return_counts=True, return_inverse=True)
- # print(f'All charge: {charge}')
- eta = charge / sigma_tilde
- if eta_min is None:
- eta_min = np.min(eta)
- if eta_max is None:
- eta_max = np.max(eta)
- def map_eta_to_unit(x):
- return (x - eta_min) / (eta_max - eta_min)
- # print(eta[0], eta[1])
- # print(map_eta_to_unit(eta[0]), map_eta_to_unit(eta[-1]))
- colors_linspace = np.linspace(map_eta_to_unit(eta[0]), map_eta_to_unit(eta[-1]), len(charge))
- colors_linspace[colors_linspace > 1] = 1
- colors_linspace[colors_linspace < 0] = 0
- colors = cmap(colors_linspace)
- sm = cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=eta_min, vmax=eta_max))
- sm.set_array([])
- fig, ax = plt.subplots(figsize=plt.figaspect(0.5))
- for i, c in enumerate(colors):
- idx, = np.nonzero(inverse == i)
- kR = data[idx, 2]
- gap = data[idx, 3]
- sort = np.argsort(kR)
- ax.plot(kR[sort], gap[sort], c=c)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=20)
- ax.set_ylabel(r'$(V_{pp}-V_{ep})/V_{pp}$', fontsize=20)
- ax.set_xlim(-0.25, 10.25)
- ax.set_ylim(-4, 5)
- divider = make_axes_locatable(ax)
- cax = divider.append_axes('right', size='5%', pad=0.05)
- cax.tick_params(labelsize=15)
- cbar = fig.colorbar(sm, cax=cax, orientation='vertical')
- cbar.set_label(r'$\eta$', rotation=0, labelpad=15, fontsize=20)
- # plt.tight_layout()
- plt.subplots_adjust(left=0.1, right=0.9, top=0.95, bottom=0.12)
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def test_gap(a_bar, kappaR, charge):
- params = ModelParams(R=150, kappaR=kappaR)
- ex = charge_distributions.create_mapped_quad_expansion(a_bar, kappaR, 0.001, sigma0=charge)
- gap = energy_gap(ex, params, match_expansion_axis_to_params=None)
- print(gap)
- def main():
- # test_gap(0.3, 10, charge=-0.003)
- # abar_kappaR_dependence(Path("/home/andraz/ChargedShells/Figures/full_amplitude_kappaR_dep.png"))
- # abar_kappaR_dependence2(Path("/home/andraz/ChargedShells/Figures/full_amplitude_abar_dep.png"))
- # charge_kappaR_dependence(a_bar=0.8, min_charge=-0.002, max_charge=0.002,
- # save_as=Path("/home/andraz/ChargedShells/Figures/full_amplitude_charge_abar08.png"),
- # cmap=cm.coolwarm)
- # charge_kappaR_dependence_heatmap(a_bar=0.5, min_charge=-0.003, max_charge=0.003,
- # save_as=Path("/home/andraz/ChargedShells/Figures/full_amplitude_heatmap_abar05.png"),
- # cmap=cm.bwr)
- # IC_gap_plot()
- # IC_gap_kappaR()
- # IC_gap_abar()
- IC_gap_charge_at_abar(0.3, which_change='changezc', eta_min=-2, eta_max=2,
- save_as=FIGURES_PATH.joinpath('ICi_data').joinpath('IC_full_amplitude_charge_abar03.png')
- )
- if __name__ == '__main__':
- main()
|