123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- from model import ModelCT # Import your custom model architecture
- import os # For file and directory operations
- import numpy as np # For numerical operations and data shuffling
- import torch # For PyTorch operations
- from torch.utils.data import DataLoader # To load data in batches
- from datareader import DataReader # Custom data reader for loading processed data
- from sklearn.metrics import roc_auc_score # To compute ROC AUC metric
- import time # For time tracking during training
- ############################################################################
- # DATA PREPARATION #
- ############################################################################
- # Define the main folder containing all processed data
- main_path_to_data = "/data/PSUF_naloge/5-naloga/processed/" # Change this path as needed
- # Get file lists from the subdirectories 'mild' and 'severe'
- files_mild = os.listdir(os.path.join(main_path_to_data, "mild"))
- files_severe = os.listdir(os.path.join(main_path_to_data, "severe"))
- # Extract unique patient IDs from filenames (assumes format: <patientID>_slice_<number>.npy)
- patients_mild = {file.split("_slice_")[0] for file in files_mild}
- patients_severe = {file.split("_slice_")[0] for file in files_severe}
- # Build a list of tuples (file_path, label) for central slice (assumed slice_4)
- # Label 0 for 'mild' and 1 for 'severe'
- all_central_slices = (
- [("mild/" + patient_ID + "_slice_4.npy", 0) for patient_ID in patients_mild] +
- [("severe/" + patient_ID + "_slice_4.npy", 1) for patient_ID in patients_severe]
- )
- # Set a fixed random seed for reproducibility and shuffle the list of samples
- np.random.seed(42)
- np.random.shuffle(all_central_slices)
- # Split data into train (60%), validation (20%), and test (20%) sets
- total_samples = len(all_central_slices)
- train_info = all_central_slices[: int(0.6 * total_samples)]
- valid_info = all_central_slices[int(0.6 * total_samples) : int(0.8 * total_samples)]
- test_info = all_central_slices[int(0.8 * total_samples) :]
- ############################################################################
- # MODEL & HYPERPARAMETERS #
- ############################################################################
- # Instantiate the model
- model = ModelCT()
-
- # Set the device for training (GPU if available, otherwise CPU)
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- # Extract hyperparameters for convenience
- learning_rate = 0.2e-3 # Base learning rate for the optimizer
- weight_decay = 0.0001 # Regularization parameter
- total_epoch = 10 # Total number of training epochs
- ############################################################################
- # DATA LOADER CREATION #
- ############################################################################
- # Create dataset objects for training and validation using the DataReader
- train_dataset = DataReader(main_path_to_data, train_info)
- valid_dataset = DataReader(main_path_to_data, valid_info)
- # Create DataLoader objects for training and validation
- train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True,)
- valid_loader = DataLoader(valid_dataset, batch_size=10, shuffle=False)
- ############################################################################
- # MODEL PREPARATION #
- ############################################################################
- # Move the model to the selected device (GPU/CPU)
- model.to(device)
- # Define the loss function (BCEWithLogitsLoss combines sigmoid activation with binary cross-entropy loss)
- criterion = torch.nn.BCEWithLogitsLoss()
- # Define the optimizer (Adam) with the specified learning rate and weight decay
- optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
- ############################################################################
- # TRAINING LOOP #
- ############################################################################
- if __name__ == '__main__': # use this to avoid Broken Pipe Error in torch 1.9
-
- # Initialize the variable to track the best validation AUC
- best_auc = -np.inf
- # Loop over epochs
- for epoch in range(total_epoch):
- start_time = time.time() # Start time for the current epoch
- print(f"Epoch: {epoch + 1}/{total_epoch}")
-
- running_loss = 0.0 # Initialize the running loss for this epoch
-
- # Set the model to training mode
- model.train()
-
- # Iterate over the training data batches
- for x, y in train_loader:
- # Move data to the correct device
- x, y = x.to(device), y.to(device)
-
- # Zero the gradients from the previous iteration
- optimizer.zero_grad()
-
- # Forward pass: Compute predictions using the model
- y_hat = model(x) # Using model(x) calls the __call__ method
- loss = criterion(y_hat, y) # Compute the loss
-
- # Backward pass: Compute gradient of the loss with respect to model parameters
- loss.backward()
-
- # Update model weights
- optimizer.step()
-
- # Accumulate loss for tracking
- running_loss += loss.item()
-
- # Compute average loss for the epoch
- avg_loss = running_loss / len(train_loader)
-
- ############################################################################
- # VALIDATION LOOP #
- ############################################################################
- # Prepare to store predictions and ground truth labels
- predictions = []
- trues = []
-
- # Set the model to evaluation mode (disables dropout, batch norm, etc.)
- model.eval()
- with torch.no_grad():
- # Iterate over the validation data batches
- for x, y in valid_loader:
- # Move data to the appropriate device
- x, y = x.to(device), y.to(device)
-
- # Forward pass to compute predictions
- y_hat = model(x)
-
- # Apply sigmoid to convert logits to probabilities
- probs = torch.sigmoid(y_hat)
-
- # Flatten and collect predictions and true labels
- predictions.extend(probs.cpu().numpy().flatten().tolist())
- trues.extend(y.cpu().numpy().flatten().tolist())
-
- # Compute ROC AUC for validation set and handle potential errors
- auc = roc_auc_score(trues, predictions)
- # Print training metrics for the epoch
- elapsed_time = time.time() - start_time
- print(f"AUC: {auc:.4f}, Avg Loss: {avg_loss:.4f}, Time: {elapsed_time:.2f} sec")
-
- # Save the best model based on validation AUC
- if auc > best_auc:
- best_model_path = os.path.join("trained_models/", 'trained_model_weights.pth')
- torch.save(model.state_dict(), best_model_path)
- best_auc = auc
|