|  | @@ -10,12 +10,18 @@
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  function [D_full, w_fin, Geometry, optGoal] = NLP_optimizer_v2(varargin)
 | 
	
		
			
				|  |  |  % This function performs the beamlet optimization
 | 
	
		
			
				|  |  | -% Inputs: (Pat_path, path2goal) or none
 | 
	
		
			
				|  |  | -%   If paths are used they should be passed as strings.
 | 
	
		
			
				|  |  | -% Outputs: full dose image dose: [D_full, w_fin, Geometry, optGoal]
 | 
	
		
			
				|  |  | -% 
 | 
	
		
			
				|  |  |  % [D_full, w_fin, Geometry, optGoal] = NLP_beamlet_optimizer;
 | 
	
		
			
				|  |  |  % 
 | 
	
		
			
				|  |  | +% Inputs:
 | 
	
		
			
				|  |  | +%       () OR
 | 
	
		
			
				|  |  | +%       (Pat_path, path2goal) OR
 | 
	
		
			
				|  |  | +%       (Pat_path, path2goal, beamlet_weights)
 | 
	
		
			
				|  |  | +%   Pat_path, path2goal = strings to patient folder and optimal goals
 | 
	
		
			
				|  |  | +%   beamlet_weights = initial beamlet weights
 | 
	
		
			
				|  |  | +%   
 | 
	
		
			
				|  |  | +% Outputs:
 | 
	
		
			
				|  |  | +%       full dose image dose: [D_full, w_fin, Geometry, optGoal]
 | 
	
		
			
				|  |  | +% 
 | 
	
		
			
				|  |  |  % Made by Peter Ferjancic 1. May 2018
 | 
	
		
			
				|  |  |  % Last updated: 1. April 2019
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -32,8 +38,25 @@ else
 | 
	
		
			
				|  |  |      path2goal = varargin{2};
 | 
	
		
			
				|  |  |  end
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -N_fcallback1 = 10000;
 | 
	
		
			
				|  |  | -N_fcallback2 = 200000;
 | 
	
		
			
				|  |  | +str = inputdlg({'N of iterations for initial calc', 'N of iterations for full calc', ...
 | 
	
		
			
				|  |  | +    'Use pre-existing NLP_result to initiate? (y/n)'}, 'input', [1,35], {'10000', '500000', 'n'});
 | 
	
		
			
				|  |  | +N_fcallback1 = str2double(str{1}); % 10000  is a good guesstimate
 | 
	
		
			
				|  |  | +N_fcallback2 = str2double(str{2}); % 500000 is a good guesstimate
 | 
	
		
			
				|  |  | +pre_beamWeights = str{3};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +switch pre_beamWeights
 | 
	
		
			
				|  |  | +    case 'y'
 | 
	
		
			
				|  |  | +        [NLP_file,NLP_path,indx] = uigetfile([Pat_path '\matlab_files\*.mat'], 'Select NLP_result file');
 | 
	
		
			
				|  |  | +        load([NLP_path, NLP_file])
 | 
	
		
			
				|  |  | +        w_beamlets = NLP_result.weights;
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        load([Pat_path, '\all_beams.mat'])
 | 
	
		
			
				|  |  | +        if numel(all_beams) ~= numel(w_beamlets)
 | 
	
		
			
				|  |  | +            error('Provided weight number does not match beamlet number!')
 | 
	
		
			
				|  |  | +        end
 | 
	
		
			
				|  |  | +    case 'n'
 | 
	
		
			
				|  |  | +        disp('Initial beam weights will be calculated.')
 | 
	
		
			
				|  |  | +end
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  %% PROGRAM STARTS HERE
 | 
	
		
			
				|  |  |  % - no tocar lo que hay debajo -
 | 
	
	
		
			
				|  | @@ -44,30 +67,70 @@ load(path2geometry)
 | 
	
		
			
				|  |  |  load(path2goal)
 | 
	
		
			
				|  |  |  [beamlets, beamlets_joined, numBeamlet, numBeam, beam_i_list] = get_beam_lets(Geometry, Pat_path);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  %% -- OPTIMIZATION TARGETS --
 | 
	
		
			
				|  |  |  % -- make the optimization optGoal structure --
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  for i_goal = 1:size(OptGoals.goals,1)
 | 
	
		
			
				|  |  | -    optGoal{i_goal}=OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | -    optGoal{i_goal}.beamlets_pruned = sparse(beamlets(optGoal{i_goal}.ROI_idx, :));
 | 
	
		
			
				|  |  | -    optGoal_beam{i_goal}=OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | -    optGoal_beam{i_goal}.beamlets_pruned = sparse(beamlets_joined(optGoal{i_goal}.ROI_idx, :));
 | 
	
		
			
				|  |  | +    answer = inputdlg(['# of supervoxels for "' OptGoals.data{i_goal}.name '" with ' num2str(numel(OptGoals.data{i_goal}.ROI_idx)) ' vox: ("0" to skip)'])
 | 
	
		
			
				|  |  | +    
 | 
	
		
			
				|  |  | +    switch answer{1}
 | 
	
		
			
				|  |  | +        case '0'
 | 
	
		
			
				|  |  | +        % if not supervoxel, just select provided ROI_idx
 | 
	
		
			
				|  |  | +        optGoal{i_goal} = OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | +        optGoal{i_goal}.beamlets_pruned = sparse(beamlets(optGoal{i_goal}.ROI_idx, :));
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal} = OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal}.beamlets_pruned = sparse(beamlets_joined(optGoal{i_goal}.ROI_idx, :));
 | 
	
		
			
				|  |  | +    
 | 
	
		
			
				|  |  | +        otherwise
 | 
	
		
			
				|  |  | +        % -- if supervoxel, merge given columns
 | 
	
		
			
				|  |  | +        % - make supervoxel map
 | 
	
		
			
				|  |  | +        mask = zeros(OptGoals.data{i_goal}.imgDim);
 | 
	
		
			
				|  |  | +        mask(OptGoals.data{i_goal}.ROI_idx) = 1;
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        superMask = superpix_group(mask, str2double(answer{1})); 
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        superVoxList = unique(superMask);
 | 
	
		
			
				|  |  | +        superVoxList = superVoxList(superVoxList>0);
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        optGoal{i_goal} = OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | +        optGoal{i_goal}.ROI_idx_old = optGoal{i_goal}.ROI_idx; % copy old index data
 | 
	
		
			
				|  |  | +        optGoal{i_goal}.ROI_idx = zeros(numel(superVoxList), 1);
 | 
	
		
			
				|  |  | +        optGoal{i_goal}.opt_weight = optGoal{i_goal}.opt_weight * numel(optGoal{i_goal}.ROI_idx_old)/numel(optGoal{i_goal}.ROI_idx);
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal} = OptGoals.data{i_goal};
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal}.ROI_idx_old = optGoal_beam{i_goal}.ROI_idx; 
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal}.ROI_idx = zeros(numel(superVoxList), 1);
 | 
	
		
			
				|  |  | +        optGoal_beam{i_goal}.opt_weight = optGoal_beam{i_goal}.opt_weight * numel(optGoal_beam{i_goal}.ROI_idx_old)/numel(optGoal_beam{i_goal}.ROI_idx);
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +        h_w1 = waitbar(0, 'merging superboxels');
 | 
	
		
			
				|  |  | +        for i_supVox = 1:numel(superVoxList)
 | 
	
		
			
				|  |  | +            supVox_idx = superVoxList(i_supVox);
 | 
	
		
			
				|  |  | +            
 | 
	
		
			
				|  |  | +            waitbar(i_supVox/numel(superVoxList), h_w1)
 | 
	
		
			
				|  |  | +            
 | 
	
		
			
				|  |  | +            idxList = find(superMask == supVox_idx);
 | 
	
		
			
				|  |  | +            
 | 
	
		
			
				|  |  | +            optGoal{i_goal}.beamlets_pruned(i_supVox,:) = sparse(mean(beamlets(idxList, :),1));
 | 
	
		
			
				|  |  | +            optGoal_beam{i_goal}.beamlets_pruned(i_supVox,:) = sparse(mean(beamlets_joined(idxList, :),1));
 | 
	
		
			
				|  |  | +            % -- make new indeces
 | 
	
		
			
				|  |  | +            optGoal{i_goal}.ROI_idx(i_supVox) = idxList(1);
 | 
	
		
			
				|  |  | +            optGoal_beam{i_goal}.ROI_idx(i_supVox) = idxList(1);
 | 
	
		
			
				|  |  | +        end
 | 
	
		
			
				|  |  | +        close(h_w1)
 | 
	
		
			
				|  |  | +    end
 | 
	
		
			
				|  |  | +    
 | 
	
		
			
				|  |  | +    
 | 
	
		
			
				|  |  |  end
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -% optGoal_idx = ROI_goals.optGoal_idx;
 | 
	
		
			
				|  |  | -% targetMinMax_idx = ROI_goals.targetMinMax_idx;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  % -- make them robust --
 | 
	
		
			
				|  |  |  RO_params=0;
 | 
	
		
			
				|  |  |  optGoal_beam = make_robust_optGoal(optGoal_beam, RO_params, beamlets_joined);
 | 
	
		
			
				|  |  |  optGoal = make_robust_optGoal(optGoal, RO_params, beamlets);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -%% -- INITIALIZE BEAMLET WEIGHTS --
 | 
	
		
			
				|  |  | -w0_beams = ones(numBeam,1);
 | 
	
		
			
				|  |  | -w0_beams = mean(optGoal_beam{1}.D_final(optGoal{1}.ROI_idx) ./ (optGoal_beam{1}.beamlets_pruned*w0_beams+0.1)) * w0_beams;
 | 
	
		
			
				|  |  | -% w0_beams = w0_beams + (2*rand(size(w0_beams))-1) *0.1 .*w0_beams; % random perturbation
 | 
	
		
			
				|  |  | -w0_beams = double(w0_beams);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |  % -- CALLBACK OPTIMIZATION FUNCTION --
 | 
	
		
			
				|  |  |  fun1 = @(x) get_penalty(x, optGoal_beam);
 | 
	
		
			
				|  |  |  fun2 = @(x) get_penalty(x, optGoal);
 | 
	
	
		
			
				|  | @@ -88,31 +151,43 @@ options = optimoptions('fmincon');
 | 
	
		
			
				|  |  |  options.MaxFunctionEvaluations = N_fcallback1;
 | 
	
		
			
				|  |  |  options.Display = 'iter';
 | 
	
		
			
				|  |  |  options.PlotFcn = 'optimplotfval';
 | 
	
		
			
				|  |  | -options.UseParallel = true;
 | 
	
		
			
				|  |  | +% options.UseParallel = true;
 | 
	
		
			
				|  |  | +options.UseParallel = false;
 | 
	
		
			
				|  |  |  % options.OptimalityTolerance = 1e-9;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -fprintf('\n running initial optimizer:')
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -%% Run the optimization
 | 
	
		
			
				|  |  | -% -- GET FULL BEAM WEIGHTS --
 | 
	
		
			
				|  |  | -tic
 | 
	
		
			
				|  |  | -w_beam = fmincon(fun1,w0_beams,A,b,Aeq,beq,lb_beam,ub,nonlcon,options);
 | 
	
		
			
				|  |  | -fprintf('  done!:')
 | 
	
		
			
				|  |  | -t=toc;
 | 
	
		
			
				|  |  | -disp(['Optimization time for beams = ',num2str(t)]);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -w_beamlets = ones(numBeamlet,1);
 | 
	
		
			
				|  |  | -numBeam=numel(unique(beam_i_list));
 | 
	
		
			
				|  |  | -for beam_i = 1:numBeam % assign weights to beamlets
 | 
	
		
			
				|  |  | -    % beamlets from same beam get same initial weights
 | 
	
		
			
				|  |  | -    w_beamlets(beam_i_list == beam_i) = w_beam(beam_i);
 | 
	
		
			
				|  |  | +%% -- INITIALIZE BEAMLET WEIGHTS --
 | 
	
		
			
				|  |  | +switch pre_beamWeights
 | 
	
		
			
				|  |  | +    case 'y'
 | 
	
		
			
				|  |  | +        % should have been assigned previously.
 | 
	
		
			
				|  |  | +        disp('Provided beamlet weights used for initial comparison')
 | 
	
		
			
				|  |  | +    case 'n'
 | 
	
		
			
				|  |  | +        % if initial beamlet weights are not provided, get quick estimate
 | 
	
		
			
				|  |  | +        fprintf('\n running initial optimizer:')
 | 
	
		
			
				|  |  | +        % initialize beamlet weights, OR
 | 
	
		
			
				|  |  | +        w0_beams = ones(numBeam,1);
 | 
	
		
			
				|  |  | +        w0_beams = mean(optGoal_beam{1}.D_final(optGoal{1}.ROI_idx) ./ (optGoal_beam{1}.beamlets_pruned*w0_beams+0.1)) * w0_beams;
 | 
	
		
			
				|  |  | +        w0_beams = double(w0_beams);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        % -- GET BEAM WEIGHTS --
 | 
	
		
			
				|  |  | +        tic
 | 
	
		
			
				|  |  | +        w_beam = fmincon(fun1,w0_beams,A,b,Aeq,beq,lb_beam,ub,nonlcon,options);
 | 
	
		
			
				|  |  | +        fprintf('  done!:')
 | 
	
		
			
				|  |  | +        t=toc;
 | 
	
		
			
				|  |  | +        disp(['Optimization time for beams = ',num2str(t)]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        w_beamlets = ones(numBeamlet,1);
 | 
	
		
			
				|  |  | +        numBeam=numel(unique(beam_i_list));
 | 
	
		
			
				|  |  | +        for beam_i = 1:numBeam % assign weights to beamlets
 | 
	
		
			
				|  |  | +            % beamlets from same beam get same initial weights
 | 
	
		
			
				|  |  | +            w_beamlets(beam_i_list == beam_i) = w_beam(beam_i);
 | 
	
		
			
				|  |  | +        end
 | 
	
		
			
				|  |  |  end
 | 
	
		
			
				|  |  | -w_beamlets = w_beamlets + (2*rand(size(w_beamlets))-1) *0.1 .*w_beamlets; % small random perturbation
 | 
	
		
			
				|  |  | -w_beamlets = 1.1* w_beamlets; % this just kicks the beamlets up a bit to make it easier for the optimizer to start
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +%% FULL OPTIMIZATION
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  % -- GET FULL BEAMLET WEIGHTS --
 | 
	
		
			
				|  |  |  options.MaxFunctionEvaluations = N_fcallback2;
 | 
	
		
			
				|  |  | -% tic
 | 
	
		
			
				|  |  | +tic
 | 
	
		
			
				|  |  |  fprintf('\n running full optimizer:')
 | 
	
		
			
				|  |  |  w_fin = fmincon(fun2,w_beamlets,A,b,Aeq,beq,lb,ub,nonlcon,options);
 | 
	
		
			
				|  |  |  fprintf('  done!:')
 | 
	
	
		
			
				|  | @@ -128,10 +203,11 @@ NLP_result.dose = D_full;
 | 
	
		
			
				|  |  |  NLP_result.weights = w_fin;
 | 
	
		
			
				|  |  |  save([Pat_path, '\matlab_files\NLP_result.mat'], 'NLP_result');
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -warning('this part needs modification')
 | 
	
		
			
				|  |  | -plot_DVH(D_full, optGoal)
 | 
	
		
			
				|  |  | -colorwash(Geometry.data, D_full, [-500, 500], [0, 60]);
 | 
	
		
			
				|  |  | -% plot_DVH_robust(D_full, optGoal, optGoal_idx)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +plot_DVH(Geometry, D_full)
 | 
	
		
			
				|  |  | +colorwash(Geometry.data, D_full, [-500, 500], [0, 35]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  end
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  %% support functions
 | 
	
	
		
			
				|  | @@ -173,27 +249,27 @@ function penalty = eval_f(x, optGoal, nrs_i, sss_i, rgs_i)
 | 
	
		
			
				|  |  |                      (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-...
 | 
	
		
			
				|  |  |                      (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target)));
 | 
	
		
			
				|  |  |              case 'min_sq'
 | 
	
		
			
				|  |  | -                % penalize if achieved dose is higher than target dose
 | 
	
		
			
				|  |  | +                % penalize if achieved dose is lower than target dose
 | 
	
		
			
				|  |  |                  temp1=min(0, (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-...
 | 
	
		
			
				|  |  |                      (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target));
 | 
	
		
			
				|  |  | -                d_penalty = 1.0e0 * sum(temp1.^2);
 | 
	
		
			
				|  |  | +                d_penalty = 1.0e0 * sum(temp1.*temp1);
 | 
	
		
			
				|  |  |              case 'max_sq'
 | 
	
		
			
				|  |  |                  % penalize if achieved dose is higher than target dose
 | 
	
		
			
				|  |  |                  temp1=max(0, (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x)-...
 | 
	
		
			
				|  |  |                      (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target));
 | 
	
		
			
				|  |  | -                d_penalty = 1.0e0 * sum(temp1.^2);
 | 
	
		
			
				|  |  | +                d_penalty = 1.0e0 * sum(temp1.*temp1);
 | 
	
		
			
				|  |  |              case 'LeastSquare'
 | 
	
		
			
				|  |  |                  % penalize with sum of squares any deviation from target
 | 
	
		
			
				|  |  |                  % dose
 | 
	
		
			
				|  |  | -                d_penalty = 1.0e-1* sum(((...
 | 
	
		
			
				|  |  | -                    optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) - ...
 | 
	
		
			
				|  |  | -                    optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target).^2);
 | 
	
		
			
				|  |  | +                temp1 = (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) - ...
 | 
	
		
			
				|  |  | +                    optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target;
 | 
	
		
			
				|  |  | +                d_penalty = 1.0e0* sum(temp1.^2);
 | 
	
		
			
				|  |  |              case 'min_perc_Volume'
 | 
	
		
			
				|  |  |                  % penalize by amount of volume under threshold
 | 
	
		
			
				|  |  |                  perc_vox = numel(find((optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target) -...
 | 
	
		
			
				|  |  |                      (optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.beamlets_pruned * x) > 0)) ...
 | 
	
		
			
				|  |  |                      / numel(optGoal{goal_i}.nrs{nrs_i}.sss{sss_i}.rgs{rgs_i}.target);
 | 
	
		
			
				|  |  | -                d_penalty = 3.0e5 * min(perc_vox-0.05, 0)
 | 
	
		
			
				|  |  | +                d_penalty = 3.0e4 * min(perc_vox-0.05, 0)
 | 
	
		
			
				|  |  |                  
 | 
	
		
			
				|  |  |              case 'max_perc_Volume'
 | 
	
		
			
				|  |  |                  % penalize by amount of volume under threshold
 | 
	
	
		
			
				|  | @@ -221,7 +297,7 @@ function optGoal = make_robust_optGoal(optGoal, RO_params, beamlets);
 | 
	
		
			
				|  |  |      % Y - Y>0 moves image down
 | 
	
		
			
				|  |  |      % Z - in/out.
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  | -    shift_mag = 2; % vox of shift
 | 
	
		
			
				|  |  | +    shift_mag = 1; % vox of shift
 | 
	
		
			
				|  |  |      nrs_scene_list={[0,0,0]};
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      
 |