helicalDosecalcSetup6.m 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. %%
  2. % This version was modified by Peter Ferjancic to accept .nrrd file format
  3. % for target.
  4. % This file has been modified by Surendra Prajapati especially to run
  5. % WiscPlan for KV beams. Works for running locally as well as in Server.
  6. %
  7. % RTF 11/4/05
  8. % Sets up the run files needed for running a Condor convolution
  9. % superposition dose calculation with photon beams.
  10. % Versions of the convolution code that run in both Windows XP, Condor, and
  11. % directly through Matlab can all be created here. The only real
  12. % differences between the files are in the access conventions, which just%
  13. % This has to do with switching forward slashes with backslashes.
  14. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  15. % Also edit:
  16. % Kernel should always be named Kernels.mat
  17. % SAD < 20 was edited from SAD < 50 for clinical system (error message)
  18. %
  19. % specify where kernel and [geometry] files are located
  20. patient_dir = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\PatientData';
  21. num_batches = 2; % number of cores you want to run the beam calculation
  22. iso = [0 0 0]; % Point about which gantry rotations begin
  23. SAD = 35; % source-axis distance for the x-ray source
  24. pitch = 0.86; % fraction of beam with couch translates per rotation
  25. % define the overall beam field size for each beam angle
  26. xpmin = -0.5; % -field width / 2
  27. xpmax = 0.5; % +field width / 2
  28. ypmin = -0.5; % -jaw width / 2
  29. ypmax = 0.5; % +jaw width / 2
  30. % y-prime points in the z-direction in the CT coordinate system
  31. % Number of beamlets in the BEV for each direction
  32. Mxp = 20; % number of leaves; leaf size is 1/20cm= 0.5mm
  33. Nyp = 1; % always 1 for Tomo due to binary mlc
  34. % ============================================= End of user-supplied inputs
  35. executable_path = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  36. kernel_file = 'Kernels.mat';
  37. % %%% geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  38. [a, ~]=nrrdread('C:\010-work\003_localGit\WiscPlan_v2\PhantomData\test_ct.nrrd');
  39. disp('loaded 1')
  40. [b, meta]=nrrdread('C:\010-work\003_localGit\WiscPlan_v2\PhantomData\test_seg.nrrd');
  41. disp('loaded 2')
  42. % geometry_file important parts:
  43. % Geometry.ROIS - actually only to get the binary mask of the target
  44. % Geometry.data - CT image in HU
  45. % Geometry.rhomw - CT image with values in relative water density
  46. % Geometry.voxel_size - self explanatory
  47. % Geometry.start - self explanatory
  48. target_idx=1;
  49. Geometry.ROIS{target_idx}.ind = find(b>0);
  50. Geometry.data = a;
  51. Geometry.rhomw = a/1000;
  52. VoxSizeString = meta.spacedirections;
  53. C=textscan(VoxSizeString(2:end-1), '%f', 9,'Delimiter',{',',') ('})
  54. C=C{1};
  55. Geometry.voxel_size = [C(1), C(5), C(9)];
  56. StartString = meta.spaceorigin;
  57. C=textscan(StartString(2:end-1), '%f', 3,'Delimiter',',')
  58. Geometry.start=C{1};
  59. targetMask = b;
  60. % tumor bow and stern locations
  61. % load(geometry_file);
  62. % ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  63. % [target_idx okay] = listdlg('ListString', ROI_names, ...
  64. % 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  65. % 'PromptString', 'Please select the target ROI. ');
  66. % if okay ~= 1
  67. % msgbox('Plan creation aborted');
  68. % return;
  69. % end
  70. % targetMask = zeros(size(Geometry.data));
  71. % targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  72. % Grozomah - targetMask needs to get a 'double' matrix with the location of
  73. % the target
  74. targetMaskZ = sum(sum(targetMask,1),2);
  75. zBow = find(targetMaskZ>0, 1, 'first')*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  76. zStern = find(targetMaskZ>0, 1, 'last')*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  77. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  78. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  79. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  80. % flags used to select which calculations will be set up
  81. Condor_flag = 1;
  82. ptvInd = target_idx; % PTV index in Geometry.ROIS
  83. fieldWidth = ypmax - ypmin;
  84. % total number of rotations required for treatment
  85. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  86. Nphi = Nrot*51; % number of angles used in the calculation
  87. % load(geometry_file);
  88. % define the limits of the angles that will be used for the calculation
  89. phimin = 0; % starting angle in radians
  90. phimax = 2*pi*Nphi;
  91. phi = [0:Nphi-1]/Nphi*2*pi*Nrot;
  92. condor_folder = patient_dir;
  93. winxp_folder = 'winxp';
  94. % create names for condor input and output folders
  95. input_folder = '.';
  96. output_folder = '.';
  97. % name of the convolution/superposition executable, which will be in the
  98. % 'code' folder of each respective run type folder
  99. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  100. winxp_executable_name = 'convolution.exe';
  101. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  102. % set the beam parameters, assuming a helical beam trajectory
  103. % folders that will be inside the 'input' folder
  104. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  105. beamspec_batches_folder = 'beamspecbatches';
  106. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  107. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  108. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  109. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  110. % output folders
  111. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  112. geometry_header_filename = 'geometryHeader.txt';
  113. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  114. % end of user-defined parameters
  115. % check the validity of the user-defined variables
  116. if xpmin >= xpmax
  117. error('xpmin must be less than xpmax.');
  118. end
  119. if ypmin >= ypmax
  120. error('ypmin must be less than ypmax.');b
  121. end
  122. if phimin > phimax
  123. error('phimin must be less than or equal to phimax.');
  124. end
  125. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  126. error('Mxp, Nyp, and Nphi must be greater than zero.');
  127. end
  128. if SAD < 20
  129. error('It is recommended that the SAD be greater than 20 cm.');
  130. end
  131. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  132. % size of each beam aperture, making them vectors so extension to
  133. % non-uniform aperture sizes becomes obvious
  134. del_xp = (xpmax - xpmin)/Mxp;
  135. del_yp = (ypmax - ypmin)/Nyp;
  136. % Calculate the xp and yp offsets, which lie at the centers of the
  137. % apertures.
  138. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  139. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  140. [M,N,Q] = size(Geometry.rhomw);
  141. START = single(Geometry.start' - iso);
  142. INC = single(Geometry.voxel_size);
  143. % define the tumor mask
  144. tumorMask = zeros(size(Geometry.rhomw),'single');
  145. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  146. BW = bwdist(tumorMask);
  147. tumorMaskExp = tumorMask;
  148. tumorMaskExp(BW <= 4) = 1;
  149. P = zeros(Mxp,Nphi);
  150. fprintf('Checking beam''s eye view ...\n');
  151. for p=1:Nphi
  152. % ir and jr form the beam's eye view (BEV)
  153. ir = [-sin(phi(p)); cos(phi(p)); 0];
  154. jr = [0 0 1]';
  155. % kr denotes the beam direction
  156. kr = [cos(phi(p)); sin(phi(p)); 0];
  157. for m=1:Mxp
  158. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  159. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  160. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  161. if ~isempty(indVisited)
  162. P(m,p) = max(deffVisited);
  163. end
  164. end
  165. end
  166. fprintf('Finished checking BEV\n');
  167. % load data required for the dose calculator
  168. load(kernel_file);
  169. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  170. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  171. % convert Geometry and kernels to single
  172. f = fieldnames(Kernels);
  173. for k=1:length(f)
  174. if isnumeric(getfield(Kernels,f{k}))
  175. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  176. end
  177. end
  178. f = fieldnames(Geometry);
  179. for k=1:length(f)
  180. if isnumeric(getfield(Geometry,f{k}))
  181. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  182. end
  183. end
  184. % account for isocenter
  185. Geometry.start = single(Geometry.start - iso);
  186. % find the total number of beams
  187. Nbeam = Nphi*Mxp*Nyp;
  188. batch_num = 0; % start the count for the number of total batches
  189. % fill up a cell array of beam structures, grouped by batch
  190. clear batches;
  191. batch_num = 0;
  192. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  193. rotNum = 0;
  194. % calculate beams for all source directions and apertures
  195. for k=1:Nphi % loop through all gantry angles
  196. % calculate the source location for a helical trajectory
  197. beam.SAD = single(SAD);
  198. % the kp vector is the beam direction, ip and jp span the beam's eye view
  199. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  200. beam.jp = single([0 0 1]);
  201. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  202. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  203. rotNumOld = rotNum;
  204. rotNum = floor(k/51) + 1; % current rotation number
  205. if rotNum - rotNumOld > 0
  206. beam_num = 0; % if the rotation number has changed, start the beam count over
  207. end
  208. for m=1:Mxp % loop through all apertures in the xp-direction
  209. % calculate the beam if the tomotherapy fluence value is non-zero
  210. if P(m,k) > 0
  211. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  212. beam_num = beam_num + 1;
  213. % set the beam aperture parameters
  214. beam.del_xp = single(del_xp);
  215. beam.del_yp = single(del_yp);
  216. beam.xp = single(xp(m));
  217. beam.yp = single(0);
  218. beam.num = single(num); % record the beam number to avoid any later ambiguity
  219. batches{rotNum}{beam_num} = beam;
  220. end
  221. end
  222. end
  223. % merge/split batches
  224. all_beams = horzcat(batches{:});
  225. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  226. batches = cell(num_batches,1);
  227. for k = 1:(num_batches-1)
  228. batches{k} = all_beams(1+num_beams_per_batch*(k-1):num_beams_per_batch*k);
  229. end
  230. batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  231. % Everything else in this file is related to saving the batches in a
  232. % useable form.
  233. if Condor_flag == 1
  234. % delete the old submission file
  235. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  236. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  237. % create folders where batch information will be sent
  238. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  239. % save the kernels
  240. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  241. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  242. % create kernel filenames files
  243. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  244. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  245. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  246. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  247. fprintf(fid,'kernel_header\n');
  248. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  249. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  250. fprintf(fid2,'kernel_header\n');
  251. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  252. fprintf(fid,'kernel_radii\n');
  253. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  254. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  255. fprintf(fid2,'kernel_radii\n');
  256. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  257. fprintf(fid,'kernel_angles\n');
  258. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  259. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  260. fprintf(fid2,'kernel_angles\n');
  261. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  262. fprintf(fid,'kernel_energies\n');
  263. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  264. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  265. fprintf(fid2,'kernel_energies\n');
  266. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  267. fprintf(fid,'kernel_primary\n');
  268. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  269. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  270. fprintf(fid2,'kernel_primary\n');
  271. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  272. fprintf(fid,'kernel_first_scatter\n');
  273. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  274. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  275. fprintf(fid2,'kernel_first_scatter\n');
  276. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  277. fprintf(fid,'kernel_second_scatter\n');
  278. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  279. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  280. fprintf(fid2,'kernel_second_scatter\n');
  281. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  282. fprintf(fid,'kernel_multiple_scatter\n');
  283. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  284. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  285. fprintf(fid2,'kernel_multiple_scatter\n');
  286. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  287. fprintf(fid,'kernel_brem_annih\n');
  288. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  289. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  290. fprintf(fid2,'kernel_brem_annih\n');
  291. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  292. fprintf(fid,'kernel_total\n');
  293. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  294. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  295. fprintf(fid2,'kernel_total\n');
  296. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  297. fprintf(fid,'kernel_fluence\n');
  298. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  299. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  300. fprintf(fid2,'kernel_fluence\n');
  301. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  302. fprintf(fid,'kernel_mu\n');
  303. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  304. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  305. fprintf(fid2,'kernel_mu\n');
  306. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  307. fprintf(fid,'kernel_mu_en\n');
  308. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  309. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  310. fprintf(fid2,'kernel_mu_en\n');
  311. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  312. fclose(fid);
  313. end
  314. % name for the condor submit file that will be used
  315. condor_submit_file = 'convolutionSubmit.txt';
  316. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  317. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  318. % check the geometry file to ensure that it's not in Hounsfield units
  319. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  320. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  321. end
  322. geometry_folder = 'geometryfiles';
  323. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  324. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  325. if Condor_flag == 1
  326. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  327. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  328. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  329. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  330. % create geometry filenames files
  331. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  332. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  333. fprintf(fid,'geometry_header\n');
  334. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  335. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  336. fprintf(fid2,'geometry_header\n');
  337. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  338. fprintf(fid,'geometry_density\n');
  339. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  340. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  341. fprintf(fid2,'geometry_density\n');
  342. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  343. fclose(fid);
  344. % write command file
  345. % TODO consistent naming throughout script
  346. for k = 1:numel(batches)
  347. fid = fopen(fullfile(patient_dir,sprintf('run%d.cmd',k-1)), 'w');
  348. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  349. fullfile(patient_dir, kernel_filenames_condor),...
  350. fullfile(patient_dir, geometry_filenames_condor),...
  351. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  352. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  353. fclose(fid);
  354. end
  355. % write the condor submit file
  356. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  357. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  358. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  359. % fprintf(fid,'###############################################################\n');
  360. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  361. % fprintf(fid,'###############################################################\n\n');
  362. % fprintf(fid,'copy_to_spool = false\n');
  363. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  364. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  365. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  366. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  367. % fprintf(fid,['Queue ' num2str(Nrot)]);
  368. % fclose(fid);
  369. % % write the condor submit file
  370. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  371. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  372. fid = fopen([condor_folder '/' condor_submit_file],'w');
  373. fprintf(fid,'###############################################################\n');
  374. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  375. fprintf(fid,'###############################################################\n\n');
  376. fprintf(fid,'copy_to_spool = false\n');
  377. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  378. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  379. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  380. fprintf(fid,['Request_memory = 1000' '\n']);
  381. fprintf(fid,['Request_disk = 500000' '\n']);
  382. fprintf(fid,['Output = $(Cluster).out' '\n']);
  383. fprintf(fid,['Log = $(Cluster).log' '\n']);
  384. fprintf(fid,['Error = $(Cluster).err' '\n']);
  385. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  386. % fclose(fid);
  387. end
  388. % write the batches to files
  389. for n=1:numel(batches)
  390. batch = batches{n}; % current batch
  391. if Condor_flag == 1
  392. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  393. end
  394. end
  395. % for k = 1:numel(batches)
  396. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  397. % end
  398. % Ask for User option to run the dose calculation locally on the computer
  399. % or just to get necessary files for CHTC server
  400. % 'y' means run locally, 'n' means not to run locally on the computer
  401. strBeamlet = '';
  402. while(1)
  403. if strcmpi('y',strBeamlet)
  404. break;
  405. elseif strcmpi('n',strBeamlet)
  406. break;
  407. end
  408. strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  409. end
  410. if(strcmpi('y',strBeamlet))
  411. for k = 1:numel(batches)
  412. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  413. end
  414. end