helicalDosecalcSetup7_fullRO.m 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. %%
  2. % This version was modified by Peter Ferjancic to accept .nrrd file format
  3. % for target. It was also rollbacked on some parameters back to the
  4. % clinical system settings.
  5. % This file has been modified by Surendra Prajapati especially to run
  6. % WiscPlan for KV beams. Works for running locally as well as in Server.
  7. %
  8. % RTF 11/4/05
  9. % Sets up the run files needed for running a Condor convolution
  10. % superposition dose calculation with photon beams.
  11. % Versions of the convolution code that run in both Windows XP, Condor, and
  12. % directly through Matlab can all be created here. The only real
  13. % differences between the files are in the access conventions, which just%
  14. % This has to do with switching forward slashes with backslashes.
  15. % Surendra edits: num_batches, SAD, pitch, xpmin/max, ypmin/max, Mxp, Nphi
  16. % Also edit:
  17. % Kernel should always be named Kernels.mat
  18. function num_batches = helicalDosecalcSetup7_fullRO(patient_dir, OptGoals, beamlet_dir)
  19. % -- INPUT:
  20. % patient_dir: specify where kernel and [geometry] files are located
  21. iso = [0 0 0]; % Point about which gantry rotations begin
  22. SAD = 85; % source-axis distance for the x-ray source ##
  23. pitch = 0.86; % fraction of beam with couch translates per rotation
  24. %% --- make the figure prompt for number of angles and beamlets
  25. str = inputdlg({'Enter number of calc cores', 'Enter number of angles (51 default)', ...
  26. 'Enter number of beamlets (64 default)'}, 'input', [1,35], {'1', '51', '64'});
  27. num_batches = str2double(str{1}); % number of cores you want to run the beam calculation
  28. % -- (3 for a 4-core comp to prevent lockdown)
  29. N_angles = str2double(str{2}); % 51 for full resolution
  30. Mxp = str2double(str{3}); % Mxp = 64; number of MLC leaves;
  31. Nyp = 1; % always 1 for Tomo due to binary mlc
  32. % define the overall beam field size for each beam angle
  33. % beam is 40 cm wide in transverse direction and 1-5 cm (usually 2) in y
  34. % direction.
  35. % isocenter is 85 cm from source, ends of jaws are 23 cm from source
  36. xpmin = -20.0; % -field width / 2
  37. xpmax = 20.0; % +field width / 2
  38. % ypmin = -0.3125; % total jaw width is 0.625 cm
  39. % ypmax = 0.3125;
  40. % ypmin = -0.5; % total jaw width is 1 cm
  41. % ypmax = 0.5;
  42. ypmin = -1.25; % total jaw width is 2.5 cm
  43. ypmax = 1.25;
  44. % y-prime points in the z-direction in the CT coordinate system
  45. % ============================================= End of user-supplied inputs
  46. % executable_path = 'C:\010-work\003_localGit\WiscPlan_v2\WiscPlanPhotonkV125\WiscPlanEXE\RyanCsphoton.x86.exe';
  47. executable_path = mfilename('fullpath');
  48. executable_path = [fileparts(fileparts(executable_path)), '\WiscPlanEXE\RyanCsphoton.x86.exe']
  49. kernel_file = 'Kernels.mat';
  50. geometry_file = fullfile(patient_dir, 'matlab_files\Geometry.mat');
  51. load(geometry_file);
  52. ROI_names = cellfun(@(c)c.name, Geometry.ROIS, 'UniformOutput', false);
  53. [target_idx, okay] = listdlg('ListString', ROI_names, ...
  54. 'SelectionMode', 'single', 'Name', 'Target Selection', ...
  55. 'PromptString', 'Please select the target ROI for beamlet calc. ');
  56. if okay ~= 1
  57. msgbox('Plan creation aborted');
  58. return;
  59. end
  60. targetMask = zeros(size(Geometry.data));
  61. targetMask(Geometry.ROIS{target_idx}.ind) = 1;
  62. % Grozomah - targetMask needs to get a 'double' matrix with the location of
  63. % the target
  64. targetMaskZ = sum(sum(targetMask,1),2);
  65. zBow = (find(targetMaskZ>0, 1, 'first')-1)*Geometry.voxel_size(3) + Geometry.start(3) + ypmin;
  66. zStern = (find(targetMaskZ>0, 1, 'last')+1)*Geometry.voxel_size(3) + Geometry.start(3) + ypmax;
  67. [subi, subj, subk] = ind2sub(size(Geometry.data), Geometry.ROIS{target_idx}.ind);
  68. iso = [Geometry.start(1)+Geometry.voxel_size(1)*mean(subi) ...
  69. Geometry.start(2)+Geometry.voxel_size(2)*mean(subj) 0];
  70. % flags used to select which calculations will be set up
  71. Condor_flag = 1;
  72. ptvInd = target_idx; % PTV index in Geometry.ROIS
  73. fieldWidth = ypmax - ypmin;
  74. % total number of rotations required for treatment
  75. Nrot = ceil(abs(zBow - zStern)/(pitch*fieldWidth));
  76. % Nphi = Nrot*51; % number of angles used in the calculation
  77. Nphi = Nrot * N_angles;
  78. % define the limits of the angles that will be used for the calculation
  79. % ##phimin = 0; % starting angle in radians
  80. % ##phimax = 2*pi*Nphi;
  81. phi = [0:Nphi-1]/Nphi *2*pi*Nrot;
  82. Geometry.start_nominal = Geometry.start;
  83. %% account for beamlet shift
  84. for scenario_i = 1:numel(OptGoals.sss_scene_list)
  85. patient_dir = [beamlet_dir '\scenario' num2str(scenario_i)];
  86. mkdir(patient_dir)
  87. condor_folder = patient_dir;
  88. winxp_folder = 'winxp';
  89. Geometry.start = Geometry.start_nominal;
  90. % create names for condor input and output folders
  91. input_folder = '.';
  92. output_folder = '.';
  93. % name of the convolution/superposition executable, which will be in the
  94. % 'code' folder of each respective run type folder
  95. condor_exectuable_name = 'convolutionCondor'; % relative path on the cluster where code will be
  96. winxp_executable_name = 'convolution.exe';
  97. matlab_executable_name = 'convolution_mex'; % name of the Matlab version of the dose calculation code
  98. % set the beam parameters, assuming a helical beam trajectory
  99. % folders that will be inside the 'input' folder
  100. beamspec_folder = 'beamspecfiles'; % directory where beam files will be stored
  101. beamspec_batches_folder = 'beamspecbatches';
  102. beamspec_batch_base_name = 'beamspecbatch'; % base name for a beamlet batch file
  103. kernel_folder = 'kernelfiles'; % folder where kernel information will be saved
  104. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  105. kernel_filenames_winxp = 'kernelFilenamesWinXP.txt';
  106. % output folders
  107. beamlet_batch_base_name = 'beamletbatch'; % base name for a dose batch file
  108. geometry_header_filename = 'geometryHeader.txt';
  109. geometry_density_filename = 'density.bin'; % save the density, not the Hounsfield units!
  110. % end of user-defined parameters
  111. % check the validity of the user-defined variables
  112. if xpmin >= xpmax
  113. error('xpmin must be less than xpmax.');
  114. end
  115. if ypmin >= ypmax
  116. error('ypmin must be less than ypmax.');b
  117. end
  118. % if phimin > phimax
  119. % error('phimin must be less than or equal to phimax.');
  120. % end
  121. if Mxp <= 0 || Nyp <= 0 || Nphi <= 0
  122. error('Mxp, Nyp, and Nphi must be greater than zero.');
  123. end
  124. if SAD < 50
  125. error('It is recommended that the SAD be greater than 50 cm.');
  126. end
  127. % the xy plane is perpendicular to the isocenter axis of the linac gantry
  128. % size of each beam aperture, making them vectors so extension to
  129. % non-uniform aperture sizes becomes obvious
  130. del_xp = (xpmax - xpmin)/Mxp;
  131. del_yp = (ypmax - ypmin)/Nyp;
  132. % Calculate the xp and yp offsets, which lie at the centers of the
  133. % apertures.
  134. xp = [xpmin:del_xp:xpmax-del_xp] + del_xp/2;
  135. yp = [ypmin:del_yp:ypmax-del_yp] + del_yp/2;
  136. [M,N,Q] = size(Geometry.rhomw);
  137. START = single(Geometry.start - iso);
  138. INC = single(Geometry.voxel_size);
  139. % Grozomah ##
  140. % START(1) = START(1)/10;
  141. % START(2) = START(2)/10;
  142. % INC(1) = INC(1)/10;
  143. % INC(2) = INC(2)/10;
  144. % END= START+[32,32,40].*INC
  145. % define the tumor mask
  146. tumorMask = zeros(size(Geometry.rhomw),'single');
  147. tumorMask(Geometry.ROIS{ptvInd}.ind) = 1;
  148. BW = bwdist(tumorMask);
  149. tumorMaskExp = tumorMask;
  150. tumorMaskExp(BW <= 4) = 1;
  151. % only do this for the nominal scenario, leave same beams for others.
  152. if scenario_i == 1
  153. P = zeros(Mxp,Nphi);
  154. fprintf('Checking beam''s eye view ...\n');
  155. for p=1:Nphi
  156. % ir and jr form the beam's eye view (BEV)
  157. ir = [-sin(phi(p)); cos(phi(p)); 0];
  158. jr = [0 0 1]';
  159. % kr denotes the beam direction
  160. kr = [cos(phi(p)); sin(phi(p)); 0];
  161. for m=1:Mxp
  162. point1 = single(-kr*SAD + [0 0 zBow + pitch*fieldWidth*phi(p)/(2*pi)]'); % source point
  163. point2 = single(point1 + (SAD*kr + ir*xp(m))*10);
  164. [indVisited,deffVisited] = singleRaytraceClean(tumorMaskExp,START,INC,point1,point2);
  165. if ~isempty(indVisited)
  166. P(m,p) = max(deffVisited);
  167. end
  168. end
  169. end
  170. fprintf('Finished checking BEV\n');
  171. end
  172. % load data required for the dose calculator
  173. load(kernel_file);
  174. Geometry.rhomw(Geometry.rhomw < 0) = 0;
  175. Geometry.rhomw(Geometry.rhomw < 0.0013) = 0.0013; % fill blank voxels with air
  176. % convert Geometry and kernels to single
  177. f = fieldnames(Kernels);
  178. for k=1:length(f)
  179. if isnumeric(getfield(Kernels,f{k}))
  180. Kernels = setfield(Kernels,f{k},single(getfield(Kernels,f{k})));
  181. end
  182. end
  183. f = fieldnames(Geometry);
  184. for k=1:length(f)
  185. if isnumeric(getfield(Geometry,f{k}))
  186. Geometry = setfield(Geometry,f{k},single(getfield(Geometry,f{k})));
  187. end
  188. end
  189. % account for isocenter
  190. Geometry.start = single(Geometry.start - iso);
  191. % change Condor folder names as appropriate
  192. % do the isocenter shift
  193. shift = OptGoals.sss_scene_list{scenario_i}; % Y X Z
  194. shiftVec = [Geometry.voxel_size(1)*shift(1) ...
  195. Geometry.voxel_size(2)*shift(2) ...
  196. Geometry.voxel_size(3)*shift(3)];
  197. Geometry.start = Geometry.start- shiftVec;
  198. % find the total number of beams
  199. Nbeam = Nphi*Mxp*Nyp;
  200. batch_num = 0; % start the count for the number of total batches
  201. % fill up a cell array of beam structures, grouped by batch
  202. clear batches;
  203. batch_num = 0;
  204. batches = cell(1,Nrot); % start the batches cell array (cell array of beam batches)
  205. rotNum = 0;
  206. % calculate beams for all source directions and apertures
  207. for k=1:Nphi % loop through all gantry angles
  208. % calculate the source location for a helical trajectory
  209. beam.SAD = single(SAD);
  210. % the kp vector is the beam direction, ip and jp span the beam's eye view
  211. beam.ip = single([-sin(phi(k)) cos(phi(k)) 0]);
  212. beam.jp = single([0 0 1]);
  213. beam.kp = single([cos(phi(k)) sin(phi(k)) 0]);
  214. beam.y_vec = single(-beam.kp*SAD + [0 0 zBow + pitch*fieldWidth*phi(k)/(2*pi)]);
  215. rotNumOld = rotNum;
  216. rotNum = floor(k/51) + 1; % current rotation number
  217. if rotNum - rotNumOld > 0
  218. beam_num = 0; % if the rotation number has changed, start the beam count over
  219. end
  220. for m=1:Mxp % loop through all apertures in the xp-direction
  221. % calculate the beam if the tomotherapy fluence value is non-zero
  222. if P(m,k) > 0
  223. num = m + (k-1)*Mxp - 1; % beamlet number (overall)
  224. beam_num = beam_num + 1;
  225. % set the beam aperture parameters
  226. beam.del_xp = single(del_xp);
  227. beam.del_yp = single(del_yp);
  228. beam.xp = single(xp(m));
  229. beam.yp = single(0);
  230. beam.num = single(num); % record the beam number to avoid any later ambiguity
  231. batches{rotNum}{beam_num} = beam;
  232. end
  233. end
  234. end
  235. % merge/split batches
  236. all_beams = horzcat(batches{:});
  237. num_beams_per_batch = ceil(numel(all_beams)/num_batches);
  238. batches = cell(num_batches,1);
  239. for k = 1:(num_batches)
  240. beams_idx = 1+num_beams_per_batch*(k-1):num_beams_per_batch*k;
  241. beams_idx (beams_idx>numel(all_beams)) = [];
  242. batches{k} = all_beams(beams_idx);
  243. end
  244. % batches{num_batches} = all_beams(1+num_beams_per_batch*(k):end);
  245. % Everything else in this file is related to saving the batches in a
  246. % useable form.
  247. if Condor_flag == 1
  248. % delete the old submission file
  249. err = rmdir(fullfile(condor_folder,beamspec_batches_folder),'s');
  250. err = rmdir(fullfile(condor_folder,kernel_folder),'s');
  251. % create folders where batch information will be sent
  252. mkdir([condor_folder '/' input_folder '/' beamspec_batches_folder]);
  253. % save the kernels
  254. save_kernels(Kernels,[condor_folder '/' input_folder '/' kernel_folder]);
  255. fprintf(['Successfully saved Condor kernels to ' input_folder '/' kernel_folder '\n']);
  256. % create kernel filenames files
  257. kernel_filenames_CHTC = 'kernelFilenamesCHTC.txt';
  258. kernel_filenames_condor = 'kernelFilenamesCondor.txt';
  259. fid = fopen([condor_folder '/' input_folder '/' kernel_filenames_condor],'w');
  260. fid2 = fopen([condor_folder '/' input_folder '/' kernel_filenames_CHTC],'w');
  261. fprintf(fid,'kernel_header\n');
  262. % fprintf(fid,['./' input_folder '/' kernel_folder '/kernel_header.txt\n']);
  263. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'kernel_header.txt'));
  264. fprintf(fid2,'kernel_header\n');
  265. fprintf(fid2, '%s/%s\n', kernel_folder,'kernel_header.txt');
  266. fprintf(fid,'kernel_radii\n');
  267. % fprintf(fid,['./' input_folder '/' kernel_folder '/radii.bin\n']);
  268. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'radii.bin'));
  269. fprintf(fid2,'kernel_radii\n');
  270. fprintf(fid2, '%s/%s\n', kernel_folder,'radii.bin');
  271. fprintf(fid,'kernel_angles\n');
  272. % fprintf(fid,['./' input_folder '/' kernel_folder '/angles.bin\n']);
  273. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'angles.bin'));
  274. fprintf(fid2,'kernel_angles\n');
  275. fprintf(fid2, '%s/%s\n', kernel_folder,'angles.bin');
  276. fprintf(fid,'kernel_energies\n');
  277. % fprintf(fid,['./' input_folder '/' kernel_folder '/energies.bin\n']);
  278. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'energies.bin'));
  279. fprintf(fid2,'kernel_energies\n');
  280. fprintf(fid2, '%s/%s\n', kernel_folder,'energies.bin');
  281. fprintf(fid,'kernel_primary\n');
  282. % fprintf(fid,['./' input_folder '/' kernel_folder '/primary.bin\n']);
  283. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'primary.bin'));
  284. fprintf(fid2,'kernel_primary\n');
  285. fprintf(fid2, '%s/%s\n', kernel_folder,'primary.bin');
  286. fprintf(fid,'kernel_first_scatter\n');
  287. % fprintf(fid,['./' input_folder '/' kernel_folder '/first_scatter.bin\n']);
  288. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'first_scatter.bin'));
  289. fprintf(fid2,'kernel_first_scatter\n');
  290. fprintf(fid2, '%s/%s\n', kernel_folder,'first_scatter.bin');
  291. fprintf(fid,'kernel_second_scatter\n');
  292. % fprintf(fid,['./' input_folder '/' kernel_folder '/second_scatter.bin\n']);
  293. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'second_scatter.bin'));
  294. fprintf(fid2,'kernel_second_scatter\n');
  295. fprintf(fid2, '%s/%s\n', kernel_folder,'second_scatter.bin');
  296. fprintf(fid,'kernel_multiple_scatter\n');
  297. % fprintf(fid,['./' input_folder '/' kernel_folder '/multiple_scatter.bin\n']);
  298. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'multiple_scatter.bin'));
  299. fprintf(fid2,'kernel_multiple_scatter\n');
  300. fprintf(fid2, '%s/%s\n', kernel_folder,'multiple_scatter.bin');
  301. fprintf(fid,'kernel_brem_annih\n');
  302. % fprintf(fid,['./' input_folder '/' kernel_folder '/brem_annih.bin\n']);
  303. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'brem_annih.bin'));
  304. fprintf(fid2,'kernel_brem_annih\n');
  305. fprintf(fid2, '%s/%s\n', kernel_folder,'brem_annih.bin');
  306. fprintf(fid,'kernel_total\n');
  307. % fprintf(fid,['./' input_folder '/' kernel_folder '/total.bin\n']);
  308. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'total.bin'));
  309. fprintf(fid2,'kernel_total\n');
  310. fprintf(fid2, '%s/%s\n', kernel_folder,'total.bin');
  311. fprintf(fid,'kernel_fluence\n');
  312. % fprintf(fid,['./' input_folder '/' kernel_folder '/fluence.bin\n']);
  313. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'fluence.bin'));
  314. fprintf(fid2,'kernel_fluence\n');
  315. fprintf(fid2, '%s/%s\n', kernel_folder,'fluence.bin');
  316. fprintf(fid,'kernel_mu\n');
  317. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu.bin\n']);
  318. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu.bin'));
  319. fprintf(fid2,'kernel_mu\n');
  320. fprintf(fid2, '%s/%s\n', kernel_folder,'mu.bin');
  321. fprintf(fid,'kernel_mu_en\n');
  322. % fprintf(fid,['./' input_folder '/' kernel_folder '/mu_en.bin\n']);
  323. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,kernel_folder,'mu_en.bin'));
  324. fprintf(fid2,'kernel_mu_en\n');
  325. fprintf(fid2, '%s/%s\n', kernel_folder,'mu_en.bin');
  326. fclose(fid);
  327. end
  328. % name for the condor submit file that will be used
  329. condor_submit_file = 'convolutionSubmit.txt';
  330. geometry_filenames_condor = 'geometryFilenamesCondor.txt';
  331. geometry_filenames_CHTC = 'geometryFilenamesCHTC.txt';
  332. % check the geometry file to ensure that it's not in Hounsfield units
  333. if length(find(Geometry.rhomw > 20)) || length(find(Geometry.rhomw < 0))
  334. error('Double check the Geometry structure, it may still be in Hounsfield units!');
  335. end
  336. geometry_folder = 'geometryfiles';
  337. batch_output_folder = 'batchoutput'; % folder to which stdout will be printed
  338. beamlet_batches_folder = 'beamletbatches'; % folder where resulting beamlet batches will be stored
  339. if Condor_flag == 1
  340. mkdir([condor_folder '/' output_folder '/' beamlet_batches_folder]);
  341. mkdir([condor_folder '/' output_folder '/' batch_output_folder]);
  342. save_geometry(Geometry,[condor_folder '/' input_folder '/' geometry_folder],geometry_header_filename,geometry_density_filename);
  343. fprintf(['Successfully saved Condor geometry to ' input_folder '/' geometry_folder '\n']);
  344. % create geometry filenames files
  345. fid = fopen([condor_folder '/' input_folder '/' geometry_filenames_condor],'w');
  346. fid2 = fopen([condor_folder '/' input_folder '/' geometry_filenames_CHTC],'w');
  347. fprintf(fid,'geometry_header\n');
  348. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_header_filename '\n']);
  349. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_header_filename));
  350. fprintf(fid2,'geometry_header\n');
  351. fprintf(fid2, '%s/%s\n', geometry_folder,'geometryHeader.txt');
  352. fprintf(fid,'geometry_density\n');
  353. % fprintf(fid,['./' input_folder '/' geometry_folder '/' geometry_density_filename '\n']);
  354. fprintf(fid,'%s\n',fullfile(patient_dir,input_folder,geometry_folder,geometry_density_filename));
  355. fprintf(fid2,'geometry_density\n');
  356. fprintf(fid2, '%s/%s\n', geometry_folder,'density.bin');
  357. fclose(fid);
  358. % write command file
  359. % TODO consistent naming throughout script
  360. for k = 1:numel(batches)
  361. fid = fopen(fullfile(condor_folder,sprintf('run%d.cmd',k-1)), 'w');
  362. fprintf(fid, '"%s" "%s" "%s" "%s" "%s"', executable_path,...
  363. fullfile(patient_dir, kernel_filenames_condor),...
  364. fullfile(patient_dir, geometry_filenames_condor),...
  365. fullfile(patient_dir, 'beamspecbatches', sprintf('beamspecbatch%d.txt',k-1)),...
  366. fullfile(patient_dir, sprintf('batch_dose%d.bin',k-1)));
  367. fclose(fid);
  368. end
  369. % write the condor submit file
  370. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  371. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  372. % fid = fopen([condor_folder '/' condor_submit_file],'w');
  373. % fprintf(fid,'###############################################################\n');
  374. % fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  375. % fprintf(fid,'###############################################################\n\n');
  376. % fprintf(fid,'copy_to_spool = false\n');
  377. % fprintf(fid,['Executable = ' code_folder '/' condor_exectuable_name '\n']);
  378. % fprintf(fid,['arguments = ' input_folder '/' kernel_filenames_condor ' ' input_folder '/' geometry_filenames_condor ' ' beamspec_batch_filename ' ' beamlet_batch_filename '\n']);
  379. % fprintf(fid,['Output = ./' output_folder '/' batch_output_folder '/batchout$(Process).txt\n']);
  380. % fprintf(fid,['Log = ./' output_folder '/' batch_output_folder '/log.txt\n']);
  381. % fprintf(fid,['Queue ' num2str(Nrot)]);
  382. % fclose(fid);
  383. % % write the condor submit file
  384. % beamspec_batch_filename = ['./' input_folder '/' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt'];
  385. % beamlet_batch_filename = ['./' output_folder '/' beamlet_batches_folder '/' beamlet_batch_base_name '$(Process).bin'];
  386. fid = fopen([condor_folder '/' condor_submit_file],'w');
  387. fprintf(fid,'###############################################################\n');
  388. fprintf(fid,'# Condor submission script for convolution/superposition code\n');
  389. fprintf(fid,'###############################################################\n\n');
  390. fprintf(fid,'copy_to_spool = false\n');
  391. fprintf(fid,['Executable = ' condor_exectuable_name '\n']);
  392. fprintf(fid,['Arguments = ' kernel_filenames_CHTC ' ' geometry_filenames_CHTC ' ' beamspec_batch_base_name '$(Process).txt ' 'batch_dose$(Process).bin\n']);
  393. fprintf(fid,['Transfer_input_files = ' kernel_folder ',' geometry_folder ',' beamspec_batches_folder '/' beamspec_batch_base_name '$(Process).txt' ',' kernel_filenames_CHTC ',' geometry_filenames_CHTC '\n']);
  394. fprintf(fid,['Request_memory = 1000' '\n']);
  395. fprintf(fid,['Request_disk = 500000' '\n']);
  396. fprintf(fid,['Output = $(Cluster).out' '\n']);
  397. fprintf(fid,['Log = $(Cluster).log' '\n']);
  398. fprintf(fid,['Error = $(Cluster).err' '\n']);
  399. fprintf(fid,['Queue ' num2str(num_batches) '\n']);
  400. % fclose(fid);
  401. end
  402. % write the batches to files
  403. for n=1:numel(batches)
  404. batch = batches{n}; % current batch
  405. if Condor_flag == 1
  406. save_beamspec_batch(batch,[condor_folder '/' input_folder '/' beamspec_batches_folder],[beamspec_batch_base_name num2str(n-1) '.txt']);
  407. end
  408. end
  409. all_beams{1}.Mxp = Mxp;
  410. all_beams{1}.N_angles = N_angles;
  411. all_beams{1}.num_batches = num_batches;
  412. save([condor_folder '\all_beams.mat'], 'all_beams');
  413. % for k = 1:numel(batches)
  414. % system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  415. % end
  416. % Ask for User option to run the dose calculation locally on the computer
  417. % or just to get necessary files for CHTC server
  418. % 'y' means run locally, 'n' means not to run locally on the computer
  419. strBeamlet = '';
  420. while(1)
  421. if strcmpi('y',strBeamlet)
  422. break;
  423. elseif strcmpi('n',strBeamlet)
  424. break;
  425. end
  426. % strBeamlet = input('Run beamlet batches dose calculation locally? y/n \n','s');
  427. strBeamlet = 'y'; %bypass question
  428. end
  429. t = datetime('now');
  430. disp(['Calculating ' num2str(size(all_beams, 2)) ' beamlets in ' num2str(size(batches, 1))...
  431. ' batches. Start: ' datestr(t)])
  432. if(strcmpi('y',strBeamlet))
  433. for k = 1:numel(batches)
  434. system([fullfile(patient_dir,sprintf('run%d.cmd',k-1)) ' &']);
  435. end
  436. end
  437. end % end of scenario loop
  438. end