Browse Source

Update 'config.toml' in preparation for sharing

nschense 3 months ago
parent
commit
7d7a0cf2d8
1 changed files with 8 additions and 8 deletions
  1. 8 8
      config.toml

+ 8 - 8
config.toml

@@ -2,13 +2,13 @@
 mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
 xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
 
-#CHANGE THESE BEFORE RUNNING
+# CHANGE THESE BEFORE RUNNING
 model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
 
 [training]
 device = 'cuda:1'
-runs = 10
-max_epochs = 10
+runs = 10 # Number of models
+max_epochs = 10 # Number of epochs each model trains for
 
 [dataset]
 validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test
@@ -16,9 +16,9 @@ validation_split = 0.4 #Splits the dataset into the train and validation/test se
 #|splt*0.5  | split*0.5      | 1-split   |
 
 [model]
-name = 'cnn-10x10'
-image_channels = 1
-clin_data_channels = 2
+name = 'cnn-10x10' # Name that model set will be saved under
+image_channels = 1 # DO NOT CHANGE UNLESS SURE
+clin_data_channels = 2 # DO NOT CHANGE UNLESS SURE
 
 [hyperparameters]
 batch_size = 32
@@ -26,8 +26,8 @@ learning_rate = 0.0001
 droprate = 0.5
 
 [operation]
-silent = false
+silent = false # Disables fancy bar graphs and reporting
 
 [ensemble]
-name = 'cnn-10x10'
+name = 'cnn-10x10' # Name that ensemble evaluator uses to load ensemble 
 prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning