Ver código fonte

Refactored Threshold code

Nicholas Schense 2 meses atrás
pai
commit
cc357abff3
5 arquivos alterados com 207 adições e 217 exclusões
  1. 0 0
      LP_ADNIMERGE.csv
  2. 3 3
      config.toml
  3. 13 0
      daily_log.md
  4. 167 201
      threshold.py
  5. 24 13
      utils/metrics.py

Diferenças do arquivo suprimidas por serem muito extensas
+ 0 - 0
LP_ADNIMERGE.csv


+ 3 - 3
config.toml

@@ -7,7 +7,7 @@ model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
 
 [training]
 device = 'cuda:1'
-runs = 100
+runs = 50
 max_epochs = 30
 
 [dataset]
@@ -16,7 +16,7 @@ validation_split = 0.4 #Splits the dataset into the train and validation/test se
 #|splt*0.5  | split*0.5      | 1-split   |
 
 [model]
-name = 'cnn-100x30-2'
+name = 'cnn-50x30'
 image_channels = 1
 clin_data_channels = 2
 
@@ -29,5 +29,5 @@ droprate = 0.5
 silent = false
 
 [ensemble]
-name = 'cnn-100x30-2'
+name = 'cnn-50x30'
 prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning

+ 13 - 0
daily_log.md

@@ -41,4 +41,17 @@ Slow day today, mostly continued with reading. Began training a new model with 1
 ### Future
 - Meet with Ali
 - Continue reading
+
+## Wednesday, June 19, 2024
+Work from home day, mostly planning and reading. Met with Ali and Brayden, discussed progress and began initial thinking towards future paths for project. Main focus on improving our uncertainty
+z
+### Progress
+- Met with Ali and Brayden
+- Began thinking about future progress
+- Worked on ensemble a bit
+
+### Future
+- Fix uncertainty metric
+- Evaluate performance of different metrics
+- Write research proposal
   

+ 167 - 201
threshold.py

@@ -10,7 +10,7 @@ import sklearn.metrics as metrics
 from tqdm import tqdm
 import utils.metrics as met
 
-RUN = True
+RUN = False
 
 # CONFIGURATION
 if os.getenv('ADL_CONFIG_PATH') is None:
@@ -21,239 +21,205 @@ else:
         config = toml.load(f)
 
 
-# This function returns a list of the accuracies given a threshold
-def threshold(config):
-    # First, get the model data
-    test_set = torch.load(
-        config['paths']['model_output']
-        + config['ensemble']['name']
-        + '/test_dataset.pt'
-    )
+ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}"
 
-    vs = torch.load(
-        config['paths']['model_output'] + config['ensemble']['name'] + '/val_dataset.pt'
-    )
+V2_PATH = ENSEMBLE_PATH + '/v2'
 
-    test_set = test_set + vs
 
-    models, _ = ens.load_models(
-        config['paths']['model_output'] + config['ensemble']['name'] + '/models/',
-        config['training']['device'],
-    )
+# Result is a 1x2 tensor, with the softmax of the 2 predicted classes
+# Want to convert to a predicted class and a confidence
+def output_to_confidence(result):
+    predicted_class = torch.argmax(result).item()
+    confidence = (torch.max(result).item() - 0.5) * 2
 
-    indv_model = models[0]
-
-    predictions = []
-    indv_predictions = []
-
-    # Evaluate ensemble and uncertainty test set
-    for mdata, target in tqdm(test_set, total=len(test_set)):
-        mri, xls = mdata
-        mri = mri.unsqueeze(0)
-        xls = xls.unsqueeze(0)
-        mdata = (mri, xls)
-        mean, variance = ens.ensemble_predict(models, mdata)
-        stdev = torch.sqrt(variance)
-        prediction = mean.item()
-
-        target = target[1]
-
-        # Check if the prediction is correct
-        correct = (prediction < 0.5 and int(target.item()) == 0) or (
-            prediction >= 0.5 and int(target.item()) == 1
-        )
-
-        predictions.append(
-            {
-                'Prediction': prediction,
-                'Actual': target.item(),
-                'Stdev': stdev.item(),
-                'Correct': correct,
-            }
-        )
-
-        i_mean = indv_model(mdata)[:, 1].item()
-        i_correct = (i_mean < 0.5 and int(target.item()) == 0) or (
-            i_mean >= 0.5 and int(target.item()) == 1
-        )
-
-        indv_predictions.append(
-            {
-                'Prediction': i_mean,
-                'Actual': target.item(),
-                'Stdev': 0,
-                'Correct': i_correct,
-            }
-        )
-
-    # Sort the predictions by the uncertainty
-    predictions = pd.DataFrame(predictions).sort_values(by='Stdev')
-
-    # Calculate the metrics for the individual model
-    indv_predictions = pd.DataFrame(indv_predictions)
-    indv_correct = indv_predictions['Correct'].sum()
-    indv_accuracy = indv_correct / len(indv_predictions)
-    indv_false_pos = len(
-        indv_predictions[
-            (indv_predictions['Prediction'] >= 0.5) & (indv_predictions['Actual'] == 0)
-        ]
-    )
-    indv_false_neg = len(
-        indv_predictions[
-            (indv_predictions['Prediction'] < 0.5) & (indv_predictions['Actual'] == 1)
-        ]
+    return torch.Tensor([predicted_class, confidence])
+
+
+# This function conducts tests on the models and returns the results, as well as saving the predictions and metrics
+def get_predictions(config):
+    models, model_descs = ens.load_models(
+        f'{ENSEMBLE_PATH}/models/',
+        config['training']['device'],
     )
-    indv_f1 = 2 * indv_correct / (2 * indv_correct + indv_false_pos + indv_false_neg)
-    indv_auc = metrics.roc_auc_score(
-        indv_predictions['Actual'], indv_predictions['Prediction']
+    models = [model.to(config['training']['device']) for model in models]
+    test_set = torch.load(f'{ENSEMBLE_PATH}/test_dataset.pt') + torch.load(
+        f'{ENSEMBLE_PATH}/val_dataset.pt'
     )
 
-    indv_metrics = {'Accuracy': indv_accuracy, 'F1': indv_f1, 'AUC': indv_auc}
-
-    thresholds = []
-    quantiles = np.arange(0.1, 1, 0.1)
-    # get uncertainty quantiles
-    for quantile in quantiles:
-        thresholds.append(predictions['Stdev'].quantile(quantile))
-
-    # Calculate the accuracy of the model for each threshold
-    accuracies = []
-    # Calculate the accuracy of the model for each threshold
-    for threshold, quantile in zip(thresholds, quantiles):
-        filtered = predictions[predictions['Stdev'] <= threshold]
-        correct = filtered['Correct'].sum()
-        total = len(filtered)
-        accuracy = correct / total
-
-        false_positives = len(
-            filtered[(filtered['Prediction'] >= 0.5) & (filtered['Actual'] == 0)]
-        )
-
-        false_negatives = len(
-            filtered[(filtered['Prediction'] < 0.5) & (filtered['Actual'] == 1)]
-        )
-
-        f1 = 2 * correct / (2 * correct + false_positives + false_negatives)
-
-        auc = metrics.roc_auc_score(filtered['Actual'], filtered['Prediction'])
-
-        accuracies.append(
-            {
-                'Threshold': threshold,
-                'Accuracy': accuracy,
-                'Quantile': quantile,
-                'F1': f1,
-                'AUC': auc,
-            }
-        )
-
-    predictions.to_csv(
-        f"{config['paths']['model_output']}{config['ensemble']['name']}/predictions.csv"
-    )
+    # [([model results], labels)]
+    results = []
 
-    indv_predictions.to_csv(
-        f"{config['paths']['model_output']}{config['ensemble']['name']}/indv_predictions.csv"
-    )
+    # [(class_1, class_2, true_label)]
+    indv_results = []
+
+    for i, (data, target) in tqdm(
+        enumerate(test_set),
+        total=len(test_set),
+        desc='Getting predictions',
+        unit='sample',
+    ):
+        mri, xls = data
+        mri = mri.unsqueeze(0).to(config['training']['device'])
+        xls = xls.unsqueeze(0).to(config['training']['device'])
+        data = (mri, xls)
+        res = []
+        for j, model in enumerate(models):
+            model.eval()
+            with torch.no_grad():
+                output = model(data)
+
+                output = output.tolist()
+
+                if j == 0:
+                    indv_results.append((output[0][0], output[0][1], target[1].item()))
 
-    return pd.DataFrame(accuracies), indv_metrics
+                res.append(output)
+        results.append((res, target.tolist()))
+
+    # The results are a list of tuples, where each tuple contains a list of model outputs and the true label
+    # We want to convert this to 2 list of tuples, one with the ensemble predicted class, ensemble confidence and true label
+    # And one with the ensemble predicted class, ensemble standard deviation and true label
+
+    # [(ensemble predicted class, ensemble confidence, true label)]
+    confidences = []
+
+    # [(ensemble predicted class, ensemble standard deviation, true label)]
+    stdevs = []
+
+    for result in results:
+        model_results, true_label = result
+        # Get the ensemble mean and variance with numpy, as these are lists
+        mean = np.mean(model_results, axis=0)
+        variance = np.var(model_results, axis=0)
+
+        # Calculate confidence and standard deviation
+        confidence = (np.max(mean) - 0.5) * 2
+        stdev = np.sqrt(variance)
+
+        # Get the predicted class
+        predicted_class = np.argmax(mean)
+
+        # Get the confidence and standard deviation of the predicted class
+        print(stdev)
+        pc_stdev = np.squeeze(stdev)[predicted_class]
+
+        # Get the true label
+        true_label = true_label[1]
+
+        confidences.append((predicted_class, confidence, true_label))
+        stdevs.append((predicted_class, pc_stdev, true_label))
+
+    return results, confidences, stdevs, indv_results
 
 
 if RUN:
-    result, indv = threshold(config)
-    result.to_csv(
-        f"{config['paths']['model_output']}{config['ensemble']['name']}/coverage.csv"
-    )
-    indv = pd.DataFrame([indv])
-    indv.to_csv(
-        f"{config['paths']['model_output']}{config['ensemble']['name']}/indv_metrics.csv"
+    results, confs, stdevs, indv_results = get_predictions(config)
+    # Convert to pandas dataframes
+    confs_df = pd.DataFrame(
+        confs, columns=['predicted_class', 'confidence', 'true_label']
     )
+    stdevs_df = pd.DataFrame(stdevs, columns=['predicted_class', 'stdev', 'true_label'])
 
-result = pd.read_csv(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/coverage.csv"
-)
-predictions = pd.read_csv(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/predictions.csv"
-)
-indv = pd.read_csv(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/indv_metrics.csv"
+    indv_df = pd.DataFrame(indv_results, columns=['class_1', 'class_2', 'true_label'])
+
+    if not os.path.exists(V2_PATH):
+        os.makedirs(V2_PATH)
+
+    confs_df.to_csv(f'{V2_PATH}/ensemble_confidences.csv')
+    stdevs_df.to_csv(f'{V2_PATH}/ensemble_stdevs.csv')
+    indv_df.to_csv(f'{V2_PATH}/individual_results.csv')
+else:
+    confs_df = pd.read_csv(f'{V2_PATH}/ensemble_confidences.csv')
+    stdevs_df = pd.read_csv(f'{V2_PATH}/ensemble_stdevs.csv')
+    indv_df = pd.read_csv(f'{V2_PATH}/individual_results.csv')
+
+# Plot confidence vs standard deviation
+plt.scatter(confs_df['confidence'], stdevs_df['stdev'])
+plt.xlabel('Confidence')
+plt.ylabel('Standard Deviation')
+plt.title('Confidence vs Standard Deviation')
+plt.savefig(f'{V2_PATH}/confidence_vs_stdev.png')
+plt.close()
+
+# Calculate Binning for Coverage
+# Sort Dataframes
+confs_df = confs_df.sort_values(by='confidence')
+stdevs_df = stdevs_df.sort_values(by='stdev')
+
+confs_df.to_csv(f'{V2_PATH}/ensemble_confidences.csv')
+stdevs_df.to_csv(f'{V2_PATH}/ensemble_stdevs.csv')
+
+# Calculate individual model accuracy
+# Determine predicted class
+indv_df['predicted_class'] = indv_df[['class_1', 'class_2']].idxmax(axis=1)
+indv_df['predicted_class'] = indv_df['predicted_class'].apply(
+    lambda x: 0 if x == 'class_1' else 1
 )
+indv_df['correct'] = indv_df['predicted_class'] == indv_df['true_label']
+accuracy_indv = indv_df['correct'].mean()
 
-print(indv)
+# Calculate percentiles for confidence and standard deviation
+quantiles_conf = confs_df.quantile(np.linspace(0, 1, 11))['confidence']
+quantiles_stdev = stdevs_df.quantile(np.linspace(0, 1, 11))['stdev']
 
+accuracies_conf = []
+# Use the quantiles to calculate the coverage
+for quantile in quantiles_conf.items():
+    percentile = quantile[0]
 
-plt.figure()
+    filt = confs_df[confs_df['confidence'] >= quantile[1]]
+    accuracy = (
+        filt[filt['predicted_class'] == filt['true_label']].shape[0] / filt.shape[0]
+    )
 
-plt.plot(result['Quantile'], result['Accuracy'], label='Ensemble Accuracy')
+    accuracies_conf.append({'percentile': percentile, 'accuracy': accuracy})
 
+accuracies_df = pd.DataFrame(accuracies_conf)
+
+# Plot the coverage
+plt.plot(accuracies_df['percentile'], accuracies_df['accuracy'], label='Ensemble')
 plt.plot(
-    result['Quantile'],
-    [indv['Accuracy']] * len(result['Quantile']),
-    label='Individual Accuracy',
+    accuracies_df['percentile'],
+    [accuracy_indv] * len(accuracies_df['percentile']),
+    label='Individual',
     linestyle='--',
 )
+plt.xlabel('Percentile')
+plt.ylabel('Accuracy')
+plt.title('Coverage conf')
 plt.legend()
+plt.savefig(f'{V2_PATH}/coverage.png')
+plt.close()
 
-plt.title('Accuracy vs Coverage')
+# Repeat for standard deviation
+accuracies_stdev = []
 
-plt.xlabel('Coverage')
-plt.ylabel('Accuracy')
-plt.gca().invert_xaxis()
+for quantile in quantiles_stdev.items():
+    percentile = quantile[0]
 
-plt.savefig(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/coverage.png"
-)
+    filt = stdevs_df[stdevs_df['stdev'] <= quantile[1]]
+    accuracy = (
+        filt[filt['predicted_class'] == filt['true_label']].shape[0] / filt.shape[0]
+    )
 
-plt.figure()
-plt.plot(result['Quantile'], result['F1'], label='Ensemble F1')
-plt.plot(
-    result['Quantile'],
-    [indv['F1']] * len(result['Quantile']),
-    label='Individual F1',
-    linestyle='--',
-)
-plt.legend()
-plt.title('F1 vs Coverage')
+    accuracies_stdev.append({'percentile': percentile, 'accuracy': accuracy})
 
-plt.xlabel('Coverage')
-plt.ylabel('F1')
-plt.gca().invert_xaxis()
+accuracies_stdev_df = pd.DataFrame(accuracies_stdev)
 
-plt.savefig(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/coverage_f1.png"
+# Plot the coverage
+plt.plot(
+    accuracies_stdev_df['percentile'], accuracies_stdev_df['accuracy'], label='Ensemble'
 )
-
-plt.figure()
-plt.plot(result['Quantile'], result['AUC'], label='Ensemble AUC')
 plt.plot(
-    result['Quantile'],
-    [indv['AUC']] * len(result['Quantile']),
-    label='Individual AUC',
+    accuracies_stdev_df['percentile'],
+    [accuracy_indv] * len(accuracies_stdev_df['percentile']),
+    label='Individual',
     linestyle='--',
 )
+plt.xlabel('Percentile')
+plt.ylabel('Accuracy')
+plt.title('Coverage Stdev')
 plt.legend()
-plt.title('AUC vs Coverage')
-plt.xlabel('Coverage')
-plt.ylabel('AUC')
 plt.gca().invert_xaxis()
-
-plt.savefig(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/coverage_auc.png"
-)
-
-# create histogram of the incorrect predictions vs the uncertainty
-plt.figure()
-plt.hist(predictions[~predictions['Correct']]['Stdev'], bins=10)
-plt.xlabel('Uncertainty')
-plt.ylabel('Number of incorrect predictions')
-plt.savefig(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/incorrect_predictions.png"
-)
-
-ece = met.ECE(predictions['Prediction'], predictions['Actual'])
-
-print(f'ECE: {ece}')
-
-with open(
-    f"{config['paths']['model_output']}{config['ensemble']['name']}/summary.txt", 'a'
-) as f:
-    f.write(f'ECE: {ece}\n')
+plt.savefig(f'{V2_PATH}/coverage_stdev.png')
+plt.close()

+ 24 - 13
utils/metrics.py

@@ -1,26 +1,23 @@
 import numpy as np
+import sklearn.metrics as mt
 
 
 # ECE from https://towardsdatascience.com/expected-calibration-error-ece-a-step-by-step-visual-explanation-with-python-code-c3e9aa12937d
-def ECE(samples, true_labels, M=5):
+def ECE(predicted_labels, confidences, true_labels, M=5):
     # Uniform M bins
     bin_boundaries = np.linspace(0, 1, M + 1)
     bin_lowers = bin_boundaries[:-1]
     bin_uppers = bin_boundaries[1:]
 
-    # Get max probability per sample i
-    confidences = samples
-    predicted_label = true_labels
-
     # get correct/false
-    accuracies = predicted_label == true_labels
+    accuracies = predicted_labels == true_labels
 
     ece = np.zeros(1)
 
     for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
         # bin sample
         in_bin = np.logical_and(
-            confidences > bin_lower.item(), confidences < bin_upper.item()
+            confidences > bin_lower.item(), confidences <= bin_upper.item()
         )
         prob_in_bin = in_bin.mean()
 
@@ -33,17 +30,13 @@ def ECE(samples, true_labels, M=5):
 
 
 # Maximum Calibration error - maximum of error per bin
-def MCE(samples, true_labels, M=5):
+def MCE(predicted_labels, confidences, true_labels, M=5):
     bin_boundaries = np.linspace(0, 1, M + 1)
     bin_lowers = bin_boundaries[:-1]
     bin_uppers = bin_boundaries[1:]
 
-    # Get max probability per sample i
-    confidences = samples
-    predicted_label = true_labels
-
     # get correct/false
-    accuracies = predicted_label == true_labels
+    accuracies = predicted_labels == true_labels
 
     mces = []
 
@@ -60,3 +53,21 @@ def MCE(samples, true_labels, M=5):
             mces.append(np.abs(avg_confid - accuracy_in_bin))
 
     return max(mces)
+
+
+def F1(predicted_labels, true_labels):
+    tp = np.sum(np.logical_and(predicted_labels == 1, true_labels == 1))
+    fp = np.sum(np.logical_and(predicted_labels == 1, true_labels == 0))
+    fn = np.sum(np.logical_and(predicted_labels == 0, true_labels == 1))
+
+    precision = tp / (tp + fp)
+    recall = tp / (tp + fn)
+
+    return 2 * (precision * recall) / (precision + recall)
+
+
+# Uses sklearn's AUC function
+# Requieres confidences to be the predicted probabilities for the positive class
+def AUC(confidences, true_labels):
+    fpr, tpr, _ = mt.roc_curve(true_labels, confidences)
+    return mt.auc(fpr, tpr)

Alguns arquivos não foram mostrados porque muitos arquivos mudaram nesse diff